Generalized Linear Mixed Models using Template Model Builder


[Up] [Top]

Documentation for package ‘glmmTMB’ version 0.2.3

Help Pages

Anova.glmmTMB Downstream methods for glmmTMB objects
as.data.frame.ranef.glmmTMB Extract Random Effects
betabinomial Family functions for glmmTMB
beta_family Family functions for glmmTMB
coef.glmmTMB Extract Random Effects
compois Family functions for glmmTMB
confint.glmmTMB Calculate confidence intervals
confint.profile.glmmTMB Compute likelihood profiles for a fitted model
downstream_methods Downstream methods for glmmTMB objects
Effect.glmmTMB Downstream methods for glmmTMB objects
emm_basis.glmmTMB Downstream methods for glmmTMB objects
epil2 Seizure Counts for Epileptics - Extended
family_glmmTMB Family functions for glmmTMB
findReTrmClasses list of specials - taken from enum.R
fixef Extract fixed-effects estimates
fixef.glmmTMB Extract fixed-effects estimates
formatVC Format the 'VarCorr' Matrix of Random Effects
formula.glmmTMB Extract the formula of a glmmTMB object
genpois Family functions for glmmTMB
getCapabilities List model options that glmmTMB knows about
getME Extract or Get Generalize Components from a Fitted Mixed Effects Model
getME.glmmTMB Extract or Get Generalize Components from a Fitted Mixed Effects Model
getReStruc Calculate random effect structure Calculates number of random effects, number of parameters, blocksize and number of blocks. Mostly for internal use.
getXReTrms Create X and random effect terms from formula
get_cor translate vector of correlation parameters to correlation values, following the definition at <URL: http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html>: if L is the lower-triangular matrix with 1 on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as Sigma = sqrt(D) L L' sqrt(D), where D = diag(L L'). For a single correlation parameter theta0, this works out to rho = theta0/sqrt(1+theta0^2).
glmmTMB Fit models with TMB
glmmTMBControl Control parameters for glmmTMB optimization
isLMM.glmmTMB support methods for parametric bootstrapping
nbinom1 Family functions for glmmTMB
nbinom2 Family functions for glmmTMB
numFactor Factor with numeric interpretable levels.
OwlModel Begging by Owl Nestlings
OwlModel_nb1_bs Begging by Owl Nestlings
OwlModel_nb1_bs_mcmc Begging by Owl Nestlings
Owls Begging by Owl Nestlings
parseNumLevels Factor with numeric interpretable levels.
predict.glmmTMB prediction
print.VarCorr.glmmTMB Printing The Variance and Correlation Parameters of a 'glmmTMB'
profile.glmmTMB Compute likelihood profiles for a fitted model
ranef Extract Random Effects
ranef.glmmTMB Extract Random Effects
recover_data.glmmTMB Downstream methods for glmmTMB objects
refit.glmmTMB support methods for parametric bootstrapping
residuals.glmmTMB Compute residuals for a glmmTMB object
Salamanders Repeated counts of salamanders in streams
sigma Extract residual standard deviation or dispersion parameter
sigma.glmmTMB Extract residual standard deviation or dispersion parameter
simulate.glmmTMB Simulate from a glmmTMB fitted model
tmbroot Compute likelihood profile confidence intervals of a TMB object by root-finding (generalized from TMB::tmbprofile)
truncated_compois Family functions for glmmTMB
truncated_genpois Family functions for glmmTMB
truncated_nbinom1 Family functions for glmmTMB
truncated_nbinom2 Family functions for glmmTMB
truncated_poisson Family functions for glmmTMB
tweedie Family functions for glmmTMB
vcov.glmmTMB Calculate Variance-Covariance Matrix for a Fitted glmmTMB model