
PSPP Users Guide
GNU PSPP Statistical Analysis Software

Release 0.6.1

This manual is for GNU PSPP version 0.6.1, software for statistical analysis.
Copyright c© 1997, 1998, 2004, 2005 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual.”

i

Table of Contents

1 Introduction . 1

2 Your rights and obligations . 2

3 Invoking PSPP . 3
3.1 Non-option Arguments . 3
3.2 Configuration Options . 3
3.3 Input and output options . 4
3.4 Language control options . 4
3.5 Informational options . 5

4 The PSPP language . 7
4.1 Tokens . 7
4.2 Forming commands of tokens . 8
4.3 Variants of syntax. 9
4.4 Types of Commands . 9
4.5 Order of Commands . 10
4.6 Handling missing observations . 11
4.7 Variables . 11

4.7.1 Attributes of Variables . 11
4.7.2 Variables Automatically Defined by PSPP 12
4.7.3 Lists of variable names . 13
4.7.4 Input and Output Formats . 13

4.7.4.1 Basic Numeric Formats . 14
4.7.4.2 Custom Currency Formats . 16
4.7.4.3 Legacy Numeric Formats . 17
4.7.4.4 Binary and Hexadecimal Numeric Formats 18
4.7.4.5 Time and Date Formats . 19
4.7.4.6 Date Component Formats . 21
4.7.4.7 String Formats . 22

4.7.5 Scratch Variables . 22
4.8 Files Used by PSPP . 22
4.9 File Handles . 23
4.10 Backus-Naur Form . 24

5 Mathematical Expressions . 25
5.1 Boolean Values . 25
5.2 Missing Values in Expressions . 25
5.3 Grouping Operators . 25
5.4 Arithmetic Operators . 25
5.5 Logical Operators . 26
5.6 Relational Operators . 26

ii

5.7 Functions . 27
5.7.1 Mathematical Functions . 27
5.7.2 Miscellaneous Mathematical Functions . 27
5.7.3 Trigonometric Functions . 28
5.7.4 Missing-Value Functions . 28
5.7.5 Set-Membership Functions . 29
5.7.6 Statistical Functions . 29
5.7.7 String Functions . 30
5.7.8 Time & Date Functions . 32

5.7.8.1 How times & dates are defined and represented 32
5.7.8.2 Functions that Produce Times . 32
5.7.8.3 Functions that Examine Times . 32
5.7.8.4 Functions that Produce Dates . 33
5.7.8.5 Functions that Examine Dates . 34
5.7.8.6 Time and Date Arithmetic . 35

5.7.9 Miscellaneous Functions . 36
5.7.10 Statistical Distribution Functions . 36

5.7.10.1 Continuous Distributions . 37
5.7.10.2 Discrete Distributions . 41

5.8 Operator Precedence . 42

6 Data Input and Output . 43
6.1 BEGIN DATA . 43
6.2 CLOSE FILE HANDLE . 43
6.3 DATA LIST . 43

6.3.1 DATA LIST FIXED . 44
Examples . 45

6.3.2 DATA LIST FREE . 46
6.3.3 DATA LIST LIST . 47

6.4 END CASE . 47
6.5 END FILE . 48
6.6 FILE HANDLE . 48
6.7 INPUT PROGRAM . 50
6.8 LIST . 53
6.9 NEW FILE . 53
6.10 PRINT . 54
6.11 PRINT EJECT . 55
6.12 PRINT SPACE . 55
6.13 REREAD . 55
6.14 REPEATING DATA . 56
6.15 WRITE . 57

iii

7 System Files and Portable Files 58
7.1 APPLY DICTIONARY . 58
7.2 EXPORT . 58
7.3 GET . 59
7.4 GET DATA . 60

7.4.1 Gnumeric Spreadsheet Files . 60
7.4.2 Postgres Database Queries . 61
7.4.3 Textual Data Files . 62

7.4.3.1 Reading Delimited Data . 62
7.4.3.2 Reading Fixed Columnar Data . 64

7.5 IMPORT . 65
7.6 MATCH FILES . 66
7.7 SAVE . 67
7.8 SYSFILE INFO . 68
7.9 XEXPORT . 69
7.10 XSAVE . 69

8 Manipulating variables . 70
8.1 ADD VALUE LABELS . 70
8.2 DELETE VARIABLES . 70
8.3 DISPLAY . 70
8.4 DISPLAY VECTORS . 71
8.5 FORMATS . 71
8.6 LEAVE . 71
8.7 MISSING VALUES . 72
8.8 MODIFY VARS . 72
8.9 NUMERIC . 73
8.10 PRINT FORMATS . 73
8.11 RENAME VARIABLES . 73
8.12 VALUE LABELS . 74
8.13 STRING . 74
8.14 VARIABLE LABELS . 74
8.15 VARIABLE ALIGNMENT . 74
8.16 VARIABLE WIDTH . 75
8.17 VARIABLE LEVEL . 75
8.18 VECTOR . 75
8.19 WRITE FORMATS . 76

9 Data transformations . 77
9.1 AGGREGATE . 77
9.2 AUTORECODE . 80
9.3 COMPUTE . 80
9.4 COUNT . 80
9.5 FLIP . 82
9.6 IF . 82
9.7 RECODE . 83
9.8 SORT CASES . 84

iv

10 Selecting data for analysis 85
10.1 FILTER . 85
10.2 N OF CASES . 85
10.3 SAMPLE . 86
10.4 SELECT IF . 86
10.5 SPLIT FILE . 86
10.6 TEMPORARY . 87
10.7 WEIGHT . 88

11 Conditional and Looping Constructs 89
11.1 BREAK . 89
11.2 DO IF . 89
11.3 DO REPEAT . 89
11.4 LOOP . 90

12 Statistics . 92
12.1 DESCRIPTIVES . 92
12.2 FREQUENCIES . 93
12.3 EXAMINE . 95
12.4 CROSSTABS . 96
12.5 NPAR TESTS . 98

12.5.1 Binomial test . 99
12.5.2 Chisquare test . 99

12.6 T-TEST . 100
12.6.1 One Sample Mode . 100
12.6.2 Independent Samples Mode . 101
12.6.3 Paired Samples Mode . 101

12.7 ONEWAY . 101
12.8 RANK . 102
12.9 REGRESSION . 103

12.9.1 Syntax . 103
12.9.2 Examples . 104

13 Utilities . 105
13.1 ADD DOCUMENT . 105
13.2 CD . 105
13.3 COMMENT . 105
13.4 DOCUMENT . 105
13.5 DISPLAY DOCUMENTS . 106
13.6 DISPLAY FILE LABEL . 106
13.7 DROP DOCUMENTS . 106
13.8 ECHO . 106
13.9 ERASE . 106
13.10 EXECUTE . 106
13.11 FILE LABEL . 106
13.12 FINISH . 107
13.13 HOST . 107

v

13.14 INCLUDE . 107
13.15 INSERT . 107
13.16 PERMISSIONS . 108
13.17 SET . 108
13.18 SHOW . 114
13.19 SUBTITLE . 114
13.20 TITLE . 115

14 Not Implemented . 116

15 Bugs . 122

16 Function Index . 123

17 Command Index . 126

18 Concept Index . 128

Appendix A Configuring PSPP 133
A.1 Locating configuration files . 133
A.2 Configuration techniques . 133
A.3 Configuration files . 133
A.4 Environment variables . 134

A.4.1 Environment substitutions . 134
A.4.2 Predefined environment variables . 134

A.5 Output devices . 134
A.5.1 Driver categories . 135
A.5.2 Macro definitions . 135
A.5.3 Driver definitions . 136
A.5.4 Dimensions . 137
A.5.5 How lines are divided into types . 137
A.5.6 How lines are divided into tokens . 138

A.6 The PostScript driver class . 139
A.7 The ASCII driver class . 140
A.8 The HTML driver class . 142
A.9 Miscellaneous configuration . 142

Appendix B GNU Free Documentation License
. 144

B.1 ADDENDUM: How to use this License for your documents . . . 150

Chapter 1: Introduction 1

1 Introduction

PSPP is a tool for statistical analysis of sampled data. It reads a syntax file and a data file,
analyzes the data, and writes the results to a listing file or to standard output.

The language accepted by PSPP is similar to those accepted by SPSS statistical products.
The details of PSPP’s language are given later in this manual.

PSPP produces output in two forms: tables and charts. Both of these can be written
in several formats; currently, ASCII, PostScript, and HTML are supported. In the future,
more drivers, such as PCL and X Window System drivers, may be developed. For now,
Ghostscript, available from the Free Software Foundation, may be used to convert PostScript
chart output to other formats.

The current version of PSPP, 0.6.1, is woefully incomplete in terms of its statistical
procedure support. PSPP is a work in progress. The author hopes to fully support all
features in the products that PSPP replaces, eventually. The author welcomes questions,
comments, donations, and code submissions. See Chapter 15 [Submitting Bug Reports],
page 122, for instructions on contacting the author.

Chapter 2: Your rights and obligations 2

2 Your rights and obligations

PSPP is not in the public domain. It is copyrighted and there are restrictions on its dis-
tribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further
sharing any version of this program that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of PSPP,
that you receive source code or else can get it if you want it, that you can change these
programs or use pieces of them in new free programs, and that you know you can do these
things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of PSPP, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is
no warranty for PSPP. If these programs are modified by someone else and passed on, we
want their recipients to know that what they have is not what we distributed, so that any
problems introduced by others will not reflect on our reputation.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise conditions of the license for PSPP are found in the GNU General Public
License. You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301 USA. This manual specifically is covered by the GNU Free
Documentation License (see Appendix B [GNU Free Documentation License], page 144).

Chapter 3: Invoking PSPP 3

3 Invoking PSPP

pspp [-B dir | --config-dir=dir] [-o device | --device=device]
[-d var[=value] | --define=var[=value]] [-u var | --undef=var]
[-f file | --out-file=file] [-p | --pipe] [-I- | --no-include]
[-I dir | --include=dir] [-i | --interactive]
[-n | --edit | --dry-run | --just-print | --recon]
[-r | --no-statrc] [-h | --help] [-l | --list]
[-c command | --command command] [-s | --safer]
[--testing-mode] [-V | --version] [-v | --verbose]
[key=value] file...

3.1 Non-option Arguments

Syntax files and output device substitutions can be specified on PSPP’s command line:

file

A file by itself on the command line will be executed as a syntax file. If multiple
files are specified, they are executed in order, as if their contents had been given
in a single file. PSPP terminates after the syntax files run, unless the -i or
--interactive option is given (see Section 3.4 [Language control options],
page 4).

key=value
Defines an output device macro key to expand to value, overriding any macro
having the same key defined in the device configuration file. See Section A.5.2
[Macro definitions], page 135.

There is one other way to specify a syntax file, if your operating system supports it. If
you have a syntax file ‘foobar.stat’, put the notation

#! /usr/local/bin/pspp

at the top, and mark the file as executable with chmod +x foobar.stat. (If PSPP is not
installed in ‘/usr/local/bin’, then insert its actual installation directory into the syntax
file instead.) Now you should be able to invoke the syntax file just by typing its name. You
can include any options on the command line as usual. PSPP entirely ignores any lines
beginning with ‘#!’.

3.2 Configuration Options

Configuration options are used to change PSPP’s configuration for the current run. The
configuration options are:

-a {compatible|enhanced}
--algorithm={compatible|enhanced}

If you chose compatible, then PSPP will use the same algorithms as used
by some proprietary statistical analysis packages. This is not recommended, as
these algorithms are inferior and in some cases compeletely broken. The default
setting is enhanced. Certain commands have subcommands which allow you
to override this setting on a per command basis.

Chapter 3: Invoking PSPP 4

-B dir

--config-dir=dir
Sets the configuration directory to dir. See Section A.1 [File locations],
page 133.

-o device

--device=device
Selects the output device with name device. If this option is given more than
once, then all devices mentioned are selected. This option disables all devices
besides those mentioned on the command line.

3.3 Input and output options

Input and output options affect how PSPP reads input and writes output. These are the
input and output options:

-f file

--out-file=file
This overrides the output file name for devices designated as listing devices. If
a file named file already exists, it is overwritten.

-p
--pipe

Allows PSPP to be used as a filter by causing the syntax file to be read from
stdin and output to be written to stdout. Conflicts with the -f file and
--file=file options.

-I-
--no-include

Clears all directories from the include path. This includes all directories put
in the include path by default. See Section A.9 [Miscellaneous configuring],
page 142.

-I dir

--include=dir
Appends directory dir to the path that is searched for include files in PSPP
syntax files.

-c command

--command=command
Execute literal command command. The command is executed before startup
syntax files, if any.

--testing-mode
Invoke heuristics to assist with testing PSPP. For use by make check and similar
scripts.

3.4 Language control options

Language control options control how PSPP syntax files are parsed and interpreted. The
available language control options are:

Chapter 3: Invoking PSPP 5

-i
--interactive

When a syntax file is specified on the command line, PSPP normally terminates
after processing it. Giving this option will cause PSPP to bring up a command
prompt after processing the syntax file.
In addition, this forces syntax files to be interpreted in interactive mode, rather
than the default batch mode. See Section A.5.6 [Tokenizing lines], page 138,
for information on the differences between batch mode and interactive mode
command interpretation.

-n
--edit
--dry-run
--just-print
--recon

Only the syntax of any syntax file specified or of commands entered at the
command line is checked. Transformations are not performed and procedures
are not executed. Not yet implemented.

-r
--no-statrc

Prevents the execution of the PSPP startup syntax file.

-s
--safer

Disables certain unsafe operations. This includes the ERASE and HOST com-
mands, as well as use of pipes as input and output files.

3.5 Informational options

Informational options cause information about PSPP to be written to the terminal. Here
are the available options:

-h

--help

Prints a message describing PSPP command-line syntax and the available de-
vice driver classes, then terminates.

-l

--list

Lists the available device driver classes, then terminates.

-x {compatible|enhanced}
--syntax={compatible|enhanced}

If you chose compatible, then PSPP will only accept command syntax that is
compatible with the proprietary program SPSS. If you choose enhanced then
additional syntax will be available. The default is enhanced.

-V

Chapter 3: Invoking PSPP 6

--version
Prints a brief message listing PSPP’s version, warranties you don’t have, copy-
ing conditions and copyright, and e-mail address for bug reports, then termi-
nates.

-v

--verbose
Increments PSPP’s verbosity level. Higher verbosity levels cause PSPP to dis-
play greater amounts of information about what it is doing. Often useful for
debugging PSPP’s configuration.
This option can be given multiple times to set the verbosity level to that value.
The default verbosity level is 0, in which no informational messages will be
displayed.
Higher verbosity levels cause messages to be displayed when the corresponding
events take place.

1
Driver and subsystem initializations.

2
Completion of driver initializations. Beginning of driver closings.

3
Completion of driver closings.

4
Files searched for; success of searches.

5
Individual directories included in file searches.

Each verbosity level also includes messages from lower verbosity levels.

Chapter 4: The PSPP language 7

4 The PSPP language

Please note: PSPP is not even close to completion. Only a few statistical
procedures are implemented. PSPP is a work in progress.

This chapter discusses elements common to many PSPP commands. Later chapters will
describe individual commands in detail.

4.1 Tokens

PSPP divides most syntax file lines into series of short chunks called tokens. Tokens are
then grouped to form commands, each of which tells PSPP to take some action—read in
data, write out data, perform a statistical procedure, etc. Each type of token is described
below.

Identifiers Identifiers are names that typically specify variables, commands, or subcom-
mands. The first character in an identifier must be a letter, ‘#’, or ‘@’. The
remaining characters in the identifier must be letters, digits, or one of the fol-
lowing special characters:

. _ $ # @

Identifiers may be any length, but only the first 64 bytes are significant. Iden-
tifiers are not case-sensitive: foobar, Foobar, FooBar, FOOBAR, and FoObaR are
different representations of the same identifier.
Some identifiers are reserved. Reserved identifiers may not be used in any con-
text besides those explicitly described in this manual. The reserved identifiers
are:

ALL AND BY EQ GE GT LE LT NE NOT OR TO WITH

Keywords Keywords are a subclass of identifiers that form a fixed part of command syntax.
For example, command and subcommand names are keywords. Keywords may
be abbreviated to their first 3 characters if this abbreviation is unambiguous.
(Unique abbreviations of 3 or more characters are also accepted: ‘FRE’, ‘FREQ’,
and ‘FREQUENCIES’ are equivalent when the last is a keyword.)
Reserved identifiers are always used as keywords. Other identifiers may be used
both as keywords and as user-defined identifiers, such as variable names.

Numbers Numbers are expressed in decimal. A decimal point is optional. Numbers may
be expressed in scientific notation by adding ‘e’ and a base-10 exponent, so that
‘1.234e3’ has the value 1234. Here are some more examples of valid numbers:

-5 3.14159265359 1e100 -.707 8945.

Negative numbers are expressed with a ‘-’ prefix. However, in situations where
a literal ‘-’ token is expected, what appears to be a negative number is treated
as ‘-’ followed by a positive number.
No white space is allowed within a number token, except for horizontal white
space between ‘-’ and the rest of the number.
The last example above, ‘8945.’ will be interpreted as two tokens, ‘8945’ and
‘.’, if it is the last token on a line. See Section 4.2 [Forming commands of
tokens], page 8.

Chapter 4: The PSPP language 8

Strings Strings are literal sequences of characters enclosed in pairs of single quotes (‘’’)
or double quotes (‘"’). To include the character used for quoting in the string,
double it, e.g. ‘’it’’s an apostrophe’’. White space and case of letters are
significant inside strings.
Strings can be concatenated using ‘+’, so that ‘"a" + ’b’ + ’c’’ is equivalent
to ‘’abc’’. Concatenation is useful for splitting a single string across multiple
source lines. The maximum length of a string, after concatenation, is 255
characters.
Strings may also be expressed as hexadecimal, octal, or binary character values
by prefixing the initial quote character by ‘X’, ‘O’, or ‘B’ or their lowercase
equivalents. Each pair, triplet, or octet of characters, according to the radix,
is transformed into a single character with the given value. If there is an
incomplete group of characters, the missing final digits are assumed to be ‘0’.
These forms of strings are nonportable because numeric values are associated
with different characters by different operating systems. Therefore, their use
should be confined to syntax files that will not be widely distributed.
The character with value 00 is reserved for internal use by PSPP. Its use in
strings causes an error and replacement by a space character.

Punctuators and Operators
These tokens are the punctuators and operators:

, / = () + - * / ** < <= <> > >= ~= & | .

Most of these appear within the syntax of commands, but the period (‘.’)
punctuator is used only at the end of a command. It is a punctuator only as
the last character on a line (except white space). When it is the last non-space
character on a line, a period is not treated as part of another token, even if it
would otherwise be part of, e.g., an identifier or a floating-point number.
Actually, the character that ends a command can be changed with SET’s END-
CMD subcommand (see Section 13.17 [SET], page 108), but we do not recom-
mend doing so. Throughout the remainder of this manual we will assume that
the default setting is in effect.

4.2 Forming commands of tokens

Most PSPP commands share a common structure. A command begins with a command
name, such as FREQUENCIES, DATA LIST, or N OF CASES. The command name may
be abbreviated to its first word, and each word in the command name may be abbreviated
to its first three or more characters, where these abbreviations are unambiguous.

The command name may be followed by one or more subcommands. Each subcommand
begins with a subcommand name, which may be abbreviated to its first three letters. Some
subcommands accept a series of one or more specifications, which follow the subcommand
name, optionally separated from it by an equals sign (‘=’). Specifications may be separated
from each other by commas or spaces. Each subcommand must be separated from the next
(if any) by a forward slash (‘/’).

There are multiple ways to mark the end of a command. The most common way is to
end the last line of the command with a period (‘.’) as described in the previous section (see

Chapter 4: The PSPP language 9

Section 4.1 [Tokens], page 7). A blank line, or one that consists only of white space or com-
ments, also ends a command by default, although you can use the NULLINE subcommand
of SET to disable this feature (see Section 13.17 [SET], page 108).

4.3 Variants of syntax.

There are two variants of command syntax, viz : batch mode and interactive mode. Batch
mode is the default when reading commands from a file. Interactive mode is the default
when commands are typed at a prompt by a user. Certain commands, such as INSERT
(see Section 13.15 [INSERT], page 107), may explicitly change the syntax mode.

In batch mode, any line that contains a non-space character in the leftmost column
begins a new command. Thus, each command consists of a flush-left line followed by any
number of lines indented from the left margin. In this mode, a plus or minus sign (‘+’, ‘−’)
as the first character in a line is ignored and causes that line to begin a new command,
which allows for visual indentation of a command without that command being considered
part of the previous command. The period terminating the end of a command is optional
but recommended.

In interactive mode, each command must either be terminated with a period, or an
empty line must follow the command. The use of (‘+’ and ‘−’ as continuation characters is
not permitted.

4.4 Types of Commands

Commands in PSPP are divided roughly into six categories:

Utility commands
Set or display various global options that affect PSPP operations. May appear
anywhere in a syntax file. See Chapter 13 [Utility commands], page 105.

File definition commands
Give instructions for reading data from text files or from special binary “system
files”. Most of these commands replace any previous data or variables with new
data or variables. At least one file definition command must appear before the
first command in any of the categories below. See Chapter 6 [Data Input and
Output], page 43.

Input program commands
Though rarely used, these provide tools for reading data files in arbitrary textual
or binary formats. See Section 6.7 [INPUT PROGRAM], page 50.

Transformations
Perform operations on data and write data to output files. Transformations are
not carried out until a procedure is executed.

Restricted transformations
Transformations that cannot appear in certain contexts. See Section 4.5 [Order
of Commands], page 10, for details.

Procedures
Analyze data, writing results of analyses to the listing file. Cause transforma-
tions specified earlier in the file to be performed. In a more general sense, a
procedure is any command that causes the active file (the data) to be read.

Chapter 4: The PSPP language 10

4.5 Order of Commands

PSPP does not place many restrictions on ordering of commands. The main restriction is
that variables must be defined before they are otherwise referenced. This section describes
the details of command ordering, but most users will have no need to refer to them.

PSPP possesses five internal states, called initial, INPUT PROGRAM, FILE TYPE,
transformation, and procedure states. (Please note the distinction between the INPUT
PROGRAM and FILE TYPE commands and the INPUT PROGRAM and FILE TYPE
states.)

PSPP starts in the initial state. Each successful completion of a command may cause a
state transition. Each type of command has its own rules for state transitions:

Utility commands
• Valid in any state.
• Do not cause state transitions. Exception: when N OF CASES is executed

in the procedure state, it causes a transition to the transformation state.

DATA LIST
• Valid in any state.
• When executed in the initial or procedure state, causes a transition to the

transformation state.
• Clears the active file if executed in the procedure or transformation state.

INPUT PROGRAM
• Invalid in INPUT PROGRAM and FILE TYPE states.
• Causes a transition to the INPUT PROGRAM state.
• Clears the active file.

FILE TYPE
• Invalid in INPUT PROGRAM and FILE TYPE states.
• Causes a transition to the FILE TYPE state.
• Clears the active file.

Other file definition commands
• Invalid in INPUT PROGRAM and FILE TYPE states.
• Cause a transition to the transformation state.
• Clear the active file, except for ADD FILES, MATCH FILES, and UP-

DATE.

Transformations
• Invalid in initial and FILE TYPE states.
• Cause a transition to the transformation state.

Restricted transformations
• Invalid in initial, INPUT PROGRAM, and FILE TYPE states.
• Cause a transition to the transformation state.

Procedures
• Invalid in initial, INPUT PROGRAM, and FILE TYPE states.
• Cause a transition to the procedure state.

Chapter 4: The PSPP language 11

4.6 Handling missing observations

PSPP includes special support for unknown numeric data values. Missing observations are
assigned a special value, called the system-missing value. This “value” actually indicates the
absence of a value; it means that the actual value is unknown. Procedures automatically
exclude from analyses those observations or cases that have missing values. Details of
missing value exclusion depend on the procedure and can often be controlled by the user;
refer to descriptions of individual procedures for details.

The system-missing value exists only for numeric variables. String variables always have
a defined value, even if it is only a string of spaces.

Variables, whether numeric or string, can have designated user-missing values. Every
user-missing value is an actual value for that variable. However, most of the time user-
missing values are treated in the same way as the system-missing value. String variables that
are wider than a certain width, usually 8 characters (depending on computer architecture),
cannot have user-missing values.

For more information on missing values, see the following sections: Section 4.7 [Vari-
ables], page 11, Section 8.7 [MISSING VALUES], page 72, Chapter 5 [Expressions], page 25.
See also the documentation on individual procedures for information on how they handle
missing values.

4.7 Variables

Variables are the basic unit of data storage in PSPP. All the variables in a file taken together,
apart from any associated data, are said to form a dictionary. Some details of variables are
described in the sections below.

4.7.1 Attributes of Variables

Each variable has a number of attributes, including:

Name An identifier, up to 64 bytes long. Each variable must have a different name.
See Section 4.1 [Tokens], page 7.

Some system variable names begin with ‘$’, but user-defined variables’ names
may not begin with ‘$’.

The final character in a variable name should not be ‘.’, because such an iden-
tifier will be misinterpreted when it is the final token on a line: FOO. will be
divided into two separate tokens, ‘FOO’ and ‘.’, indicating end-of-command. See
Section 4.1 [Tokens], page 7.

The final character in a variable name should not be ‘_’, because some such
identifiers are used for special purposes by PSPP procedures.

As with all PSPP identifiers, variable names are not case-sensitive. PSPP
capitalizes variable names on output the same way they were capitalized at
their point of definition in the input.

Type Numeric or string.

Width (string variables only) String variables with a width of 8 characters or fewer
are called short string variables. Short string variables can be used in many

Chapter 4: The PSPP language 12

procedures where long string variables (those with widths greater than 8) are
not allowed.
Certain systems may consider strings longer than 8 characters to be short
strings. Eight characters represents a minimum figure for the maximum length
of a short string.

Position Variables in the dictionary are arranged in a specific order. DISPLAY can be
used to show this order: see Section 8.3 [DISPLAY], page 70.

Initialization
Either reinitialized to 0 or spaces for each case, or left at its existing value. See
Section 8.6 [LEAVE], page 71.

Missing values
Optionally, up to three values, or a range of values, or a specific value plus a
range, can be specified as user-missing values. There is also a system-missing
value that is assigned to an observation when there is no other obvious value for
that observation. Observations with missing values are automatically excluded
from analyses. User-missing values are actual data values, while the system-
missing value is not a value at all. See Section 4.6 [Missing Observations],
page 11.

Variable label
A string that describes the variable. See Section 8.14 [VARIABLE LABELS],
page 74.

Value label
Optionally, these associate each possible value of the variable with a string. See
Section 8.12 [VALUE LABELS], page 74.

Print format
Display width, format, and (for numeric variables) number of decimal places.
This attribute does not affect how data are stored, just how they are displayed.
Example: a width of 8, with 2 decimal places. See Section 4.7.4 [Input and
Output Formats], page 13.

Write format
Similar to print format, but used by the WRITE command (see Section 6.15
[WRITE], page 57).

4.7.2 Variables Automatically Defined by PSPP

There are seven system variables. These are not like ordinary variables because system
variables are not always stored. They can be used only in expressions. These system
variables, whose values and output formats cannot be modified, are described below.

$CASENUM Case number of the case at the moment. This changes as cases are shuffled
around.

$DATE Date the PSPP process was started, in format A9, following the pattern DD MMM
YY.

$JDATE Number of days between 15 Oct 1582 and the time the PSPP process was
started.

Chapter 4: The PSPP language 13

$LENGTH Page length, in lines, in format F11.

$SYSMIS System missing value, in format F1.

$TIME Number of seconds between midnight 14 Oct 1582 and the time the active file
was read, in format F20.

$WIDTH Page width, in characters, in format F3.

4.7.3 Lists of variable names

To refer to a set of variables, list their names one after another. Optionally, their names
may be separated by commas. To include a range of variables from the dictionary in the
list, write the name of the first and last variable in the range, separated by TO. For instance,
if the dictionary contains six variables with the names ID, X1, X2, GOAL, MET, and NEXTGOAL,
in that order, then X2 TO MET would include variables X2, GOAL, and MET.

Commands that define variables, such as DATA LIST, give TO an alternate meaning.
With these commands, TO define sequences of variables whose names end in consecutive
integers. The syntax is two identifiers that begin with the same root and end with numbers,
separated by TO. The syntax X1 TO X5 defines 5 variables, named X1, X2, X3, X4, and X5. The
syntax ITEM0008 TO ITEM0013 defines 6 variables, named ITEM0008, ITEM0009, ITEM0010,
ITEM0011, ITEM0012, and ITEM00013. The syntaxes QUES001 TO QUES9 and QUES6 TO QUES3
are invalid.

After a set of variables has been defined with DATA LIST or another command with
this method, the same set can be referenced on later commands using the same syntax.

4.7.4 Input and Output Formats

An input format describes how to interpret the contents of an input field as a number or
a string. It might specify that the field contains an ordinary decimal number, a time or
date, a number in binary or hexadecimal notation, or one of several other notations. Input
formats are used by commands such as DATA LIST that read data or syntax files into the
PSPP active file.

Every input format corresponds to a default output format that specifies the formatting
used when the value is output later. It is always possible to explicitly specify an output
format that resembles the input format. Usually, this is the default, but in cases where the
input format is unfriendly to human readability, such as binary or hexadecimal formats, the
default output format is an easier-to-read decimal format.

Every variable has two output formats, called its print format and write format. Print
formats are used in most output contexts; write formats are used only by WRITE (see
Section 6.15 [WRITE], page 57). Newly created variables have identical print and write
formats, and FORMATS, the most commonly used command for changing formats (see
Section 8.5 [FORMATS], page 71), sets both of them to the same value as well. Thus, most
of the time, the distinction between print and write formats is unimportant.

Input and output formats are specified to PSPP with a format specification of the form
TYPEw or TYPEw.d, where TYPE is one of the format types described later, w is a field width
measured in columns, and d is an optional number of decimal places. If d is omitted, a
value of 0 is assumed. Some formats do not allow a nonzero d to be specified.

The following sections describe the input and output formats supported by PSPP.

Chapter 4: The PSPP language 14

4.7.4.1 Basic Numeric Formats

The basic numeric formats are used for input and output of real numbers in standard or
scientific notation. The following table shows an example of how each format displays
positive and negative numbers with the default decimal point setting:

Format 3141.59 -3141.59
F8.2 3141.59 -3141.59
COMMA9.2 3,141.59 -3,141.59
DOT9.2 3.141,59 -3.141,59
DOLLAR10.2 $3,141.59 -$3,141.59
PCT9.2 3141.59% -3141.59%
E8.1 3.1E+003 -3.1E+003

On output, numbers in F format are expressed in standard decimal notation with the
requested number of decimal places. The other formats output some variation on this style:
• Numbers in COMMA format are additionally grouped every three digits by inserting

a grouping character. The grouping character is ordinarily a comma, but it can be
changed to a period (see [SET DECIMAL], page 110).

• DOT format is like COMMA format, but it interchanges the role of the decimal point
and grouping characters. That is, the current grouping character is used as a decimal
point and vice versa.

• DOLLAR format is like COMMA format, but it prefixes the number with ‘$’.
• PCT format is like F format, but adds ‘%’ after the number.
• The E format always produces output in scientific notation.

On input, the basic numeric formats accept positive and numbers in standard decimal
notation or scientific notation. Leading and trailing spaces are allowed. An empty or all-
spaces field, or one that contains only a single period, is treated as the system missing
value.

In scientific notation, the exponent may be introduced by a sign (‘+’ or ‘-’), or by one of
the letters ‘e’ or ‘d’ (in uppercase or lowercase), or by a letter followed by a sign. A single
space may follow the letter or the sign or both.

On fixed-format DATA LIST (see Section 6.3.1 [DATA LIST FIXED], page 44) and in
a few other contexts, decimals are implied when the field does not contain a decimal point.
In F6.5 format, for example, the field 314159 is taken as the value 3.14159 with implied
decimals. Decimals are never implied if an explicit decimal point is present or if scientific
notation is used.

E and F formats accept the basic syntax already described. The other formats allow
some additional variations:
• COMMA, DOLLAR, and DOT formats ignore grouping characters within the integer

part of the input field. The identity of the grouping character depends on the format.
• DOLLAR format allows a dollar sign to precede the number. In a negative number,

the dollar sign may precede or follow the minus sign.
• PCT format allows a percent sign to follow the number.

Chapter 4: The PSPP language 15

All of the basic number formats have a maximum field width of 40 and accept no more
than 16 decimal places, on both input and output. Some additional restrictions apply:
• As input formats, the basic numeric formats allow no more decimal places than the field

width. As output formats, the field width must be greater than the number of decimal
places; that is, large enough to allow for a decimal point and the number of requested
decimal places. DOLLAR and PCT formats must allow an additional column for ‘$’
or ‘%’.

• The default output format for a given input format increases the field width enough to
make room for optional input characters. If an input format calls for decimal places,
the width is increased by 1 to make room for an implied decimal point. COMMA,
DOT, and DOLLAR formats also increase the output width to make room for grouping
characters. DOLLAR and PCT further increase the output field width by 1 to make
room for ‘$’ or ‘%’. The increased output width is capped at 40, the maximum field
width.

• The E format is exceptional. For output, E format has a minimum width of 7 plus the
number of decimal places. The default output format for an E input format is an E
format with at least 3 decimal places and thus a minimum width of 10.

More details of basic numeric output formatting are given below:
• Output rounds to nearest, with ties rounded away from zero. Thus, 2.5 is output as 3

in F1.0 format, and -1.125 as -1.13 in F5.1 format.
• The system-missing value is output as a period in a field of spaces, placed in the

decimal point’s position, or in the rightmost column if no decimal places are requested.
A period is used even if the decimal point character is a comma.

• A number that does not fill its field is right-justified within the field.
• A number is too large for its field causes decimal places to be dropped to make room.

If dropping decimals does not make enough room, scientific notation is used if the field
is wide enough. If a number does not fit in the field, even in scientific notation, the
overflow is indicated by filling the field with asterisks (‘*’).

• COMMA, DOT, and DOLLAR formats insert grouping characters only if space is
available for all of them. Grouping characters are never inserted when all decimal
places must be dropped. Thus, 1234.56 in COMMA5.2 format is output as ‘ 1235’
without a comma, even though there is room for one, because all decimal places were
dropped.

• DOLLAR or PCT format drop the ‘$’ or ‘%’ only if the number would not fit at all
without it. Scientific notation with ‘$’ or ‘%’ is preferred to ordinary decimal notation
without it.

• Except in scientific notation, a decimal point is included only when it is followed by
a digit. If the integer part of the number being output is 0, and a decimal point is
included, then the zero before the decimal point is dropped.
In scientific notation, the number always includes a decimal point, even if it is not
followed by a digit.

• A negative number includes a minus sign only in the presence of a nonzero digit: -0.01
is output as ‘-.01’ in F4.2 format but as ‘ .0’ in F4.1 format. Thus, a “negative
zero” never includes a minus sign.

Chapter 4: The PSPP language 16

• In negative numbers output in DOLLAR format, the dollar sign follows the negative
sign. Thus, -9.99 in DOLLAR6.2 format is output as -$9.99.

• In scientific notation, the exponent is output as ‘E’ followed by ‘+’ or ‘-’ and exactly
three digits. Numbers with magnitude less than 10**-999 or larger than 10**999 are not
supported by most computers, but if they are supported then their output is considered
to overflow the field and will be output as asterisks.

• On most computers, no more than 15 decimal digits are significant in output, even
if more are printed. In any case, output precision cannot be any higher than input
precision; few data sets are accurate to 15 digits of precision. Unavoidable loss of
precision in intermediate calculations may also reduce precision of output.

• Special values such as infinities and “not a number” values are usually converted to the
system-missing value before printing. In a few circumstances, these values are output
directly. In fields of width 3 or greater, special values are output as however many
characters will fit from +Infinity or -Infinity for infinities, from NaN for “not a
number,” or from Unknown for other values (if any are supported by the system). In
fields under 3 columns wide, special values are output as asterisks.

4.7.4.2 Custom Currency Formats

The custom currency formats are closely related to the basic numeric formats, but they
allow users to customize the output format. The SET command configures custom currency
formats, using the syntax

SET CCx="string".

where x is A, B, C, D, or E, and string is no more than 16 characters long.

string must contain exactly three commas or exactly three periods (but not both), except
that a single quote character may be used to “escape” a following comma, period, or single
quote. If three commas are used, commas will be used for grouping in output, and a period
will be used as the decimal point. Uses of periods reverses these roles.

The commas or periods divide string into four fields, called the negative prefix, prefix,
suffix, and negative suffix, respectively. The prefix and suffix are added to output whenever
space is available. The negative prefix and negative suffix are always added to a negative
number when the output includes a nonzero digit.

The following syntax shows how custom currency formats could be used to reproduce
basic numeric formats:

SET CCA="-,,,". /* Same as COMMA.
SET CCB="-...". /* Same as DOT.
SET CCC="-,$,,". /* Same as DOLLAR.
SET CCD="-,,%,". /* Like PCT, but groups with commas.

Here are some more examples of custom currency formats. The final example shows how
to use a single quote to escape a delimiter:

SET CCA=",EUR,,-". /* Euro.
SET CCB="(,USD ,,)". /* US dollar.
SET CCC="-.R$..". /* Brazilian real.
SET CCD="-,, NIS,". /* Israel shekel.
SET CCE="-.Rp’. ..". /* Indonesia Rupiah.

Chapter 4: The PSPP language 17

These formats would yield the following output:

Format 3145.59 -3145.59
CCA12.2 EUR3,145.59 EUR3,145.59-
CCB14.2 USD 3,145.59 (USD 3,145.59)
CCC11.2 R$3.145,59 -R$3.145,59
CCD13.2 3,145.59 NIS -3,145.59 NIS
CCE10.0 Rp. 3.146 -Rp. 3.146

The default for all the custom currency formats is ‘-,,,’, equivalent to COMMA format.

4.7.4.3 Legacy Numeric Formats

The N and Z numeric formats provide compatibility with legacy file formats. They have
much in common:
• Output is rounded to the nearest representable value, with ties rounded away from

zero.
• Numbers too large to display are output as a field filled with asterisks (‘*’).
• The decimal point is always implicitly the specified number of digits from the right

edge of the field, except that Z format input allows an explicit decimal point.
• Scientific notation may not be used.
• The system-missing value is output as a period in a field of spaces. The period is

placed just to the right of the implied decimal point in Z format, or at the right end
in N format or in Z format if no decimal places are requested. A period is used even if
the decimal point character is a comma.

• Field width may range from 1 to 40. Decimal places may range from 0 up to the field
width, to a maximum of 16.

• When a legacy numeric format used for input is converted to an output format, it is
changed into the equivalent F format. The field width is increased by 1 if any decimal
places are specified, to make room for a decimal point. For Z format, the field width is
increased by 1 more column, to make room for a negative sign. The output field width
is capped at 40 columns.

N Format

The N format supports input and output of fields that contain only digits. On input, leading
or trailing spaces, a decimal point, or any other non-digit character causes the field to be
read as the system-missing value. As a special exception, an N format used on DATA LIST
FREE or DATA LIST LIST is treated as the equivalent F format.

On output, N pads the field on the left with zeros. Negative numbers are output like
the system-missing value.

Z Format

The Z format is a “zoned decimal” format used on IBM mainframes. Z format encodes the
sign as part of the final digit, which must be one of the following:

0123456789

Chapter 4: The PSPP language 18

{ABCDEFGHI
}JKLMNOPQR

where the characters in each row represent digits 0 through 9 in order. Characters in the
first two rows indicate a positive sign; those in the third indicate a negative sign.

On output, Z fields are padded on the left with spaces. On input, leading and trailing
spaces are ignored. Any character in an input field other than spaces, the digit characters
above, and ‘.’ causes the field to be read as system-missing.

The decimal point character for input and output is always ‘.’, even if the decimal point
character is a comma (see [SET DECIMAL], page 110).

Nonzero, negative values output in Z format are marked as negative even when no
nonzero digits are output. For example, -0.2 is output in Z1.0 format as ‘J’. The “negative
zero” value supported by most machines is output as positive.

4.7.4.4 Binary and Hexadecimal Numeric Formats

The binary and hexadecimal formats are primarily designed for compatibility with existing
machine formats, not for human readability. All of them therefore have a F format as
default output format. Some of these formats are only portable between machines with
compatible byte ordering (endianness) or floating-point format.

Binary formats use byte values that in text files are interpreted as special control func-
tions, such as carriage return and line feed. Thus, data in binary formats should not be
included in syntax files or read from data files with variable-length records, such as ordinary
text files. They may be read from or written to data files with fixed-length records. See
Section 6.6 [FILE HANDLE], page 48, for information on working with fixed-length records.

P and PK Formats

These are binary-coded decimal formats, in which every byte (except the last, in P format)
represents two decimal digits. The most-significant 4 bits of the first byte is the most-
significant decimal digit, the least-significant 4 bits of the first byte is the next decimal
digit, and so on.

In P format, the most-significant 4 bits of the last byte are the least-significant decimal
digit. The least-significant 4 bits represent the sign: decimal 15 indicates a negative value,
decimal 13 indicates a positive value.

Numbers are rounded downward on output. The system-missing value and numbers
outside representable range are output as zero.

The maximum field width is 16. Decimal places may range from 0 up to the number of
decimal digits represented by the field.

The default output format is an F format with twice the input field width, plus one
column for a decimal point (if decimal places were requested).

IB and PIB Formats

These are integer binary formats. IB reads and writes 2’s complement binary integers, and
PIB reads and writes unsigned binary integers. The byte ordering is by default the host
machine’s, but SET RIB may be used to select a specific byte ordering for reading (see
[SET RIB], page 110) and SET WIB, similarly, for writing (see [SET WIB], page 112).

Chapter 4: The PSPP language 19

The maximum field width is 8. Decimal places may range from 0 up to the number of
decimal digits in the largest value representable in the field width.

The default output format is an F format whose width is the number of decimal digits
in the largest value representable in the field width, plus 1 if the format has decimal places.

RB Format

This is a binary format for real numbers. By default it reads and writes the host machine’s
floating-point format, but SET RRB may be used to select an alternate floating-point
format for reading (see [SET RRB], page 110) and SET WRB, similarly, for writing (see
[SET WRB], page 112).

The recommended field width depends on the floating-point format. NATIVE (the
default format), IDL, IDB, VD, VG, and ZL formats should use a field width of 8. ISL,
ISB, VF, and ZS formats should use a field width of 4. Other field widths will not produce
useful results. The maximum field width is 8. No decimal places may be specified.

The default output format is F8.2.

PIBHEX and RBHEX Formats

These are hexadecimal formats, for reading and writing binary formats where each byte has
been recoded as a pair of hexadecimal digits.

A hexadecimal field consists solely of hexadecimal digits ‘0’. . . ‘9’ and ‘A’. . . ‘F’. Upper-
case and lowercase are accepted on input; output is in uppercase.

Other than the hexadecimal representation, these formats are equivalent to PIB and
RB formats, respectively. However, bytes in PIBHEX format are always ordered with the
most-significant byte first (big-endian order), regardless of the host machine’s native byte
order or PSPP settings.

Field widths must be even and between 2 and 16. RBHEX format allows no decimal
places; PIBHEX allows as many decimal places as a PIB format with half the given width.

4.7.4.5 Time and Date Formats

In PSPP, a time is an interval. The time formats translate between human-friendly de-
scriptions of time intervals and PSPP’s internal representation of time intervals, which is
simply the number of seconds in the interval. PSPP has two time formats:

Time Format Template Example
TIME hh:MM:SS.ss 04:31:17.01
DTIME DD HH:MM:SS.ss 00 04:31:17.01

A date is a moment in the past or the future. Internally, PSPP represents a date
as the number of seconds since the epoch, midnight, Oct. 14, 1582. The date formats
translate between human-readable dates and PSPP’s numeric representation of dates and
times. PSPP has several date formats:

Chapter 4: The PSPP language 20

Date Format Template Example
DATE dd-mmm-yyyy 01-OCT-1978
ADATE mm/dd/yyyy 10/01/1978
EDATE dd.mm.yyyy 01.10.1978
JDATE yyyyjjj 1978274
SDATE yyyy/mm/dd 1978/10/01
QYR q Q yyyy 3 Q 1978
MOYR mmm yyyy OCT 1978
WKYR ww WK yyyy 40 WK 1978
DATETIME dd-mmm-yyyy HH:MM:SS.ss 01-OCT-1978 04:31:17.01

The templates in the preceding tables describe how the time and date formats are input
and output:

dd Day of month, from 1 to 31. Always output as two digits.

mm
mmm Month. In output, mm is output as two digits, mmm as the first three letters of an

English month name (January, February, . . .). In input, both of these formats,
plus Roman numerals, are accepted.

yyyy Year. In output, DATETIME always produces a 4-digit year; other formats can
produce a 2- or 4-digit year. The century assumed for 2-digit years depends on
the EPOCH setting (see [SET EPOCH], page 110). In output, a year outside
the epoch causes the whole field to be filled with asterisks (‘*’).

jjj Day of year (Julian day), from 1 to 366. This is exactly three digits giving the
count of days from the start of the year. January 1 is considered day 1.

q Quarter of year, from 1 to 4. Quarters start on January 1, April 1, July 1, and
October 1.

ww Week of year, from 1 to 53. Output as exactly two digits. January 1 is the first
day of week 1.

DD Count of days, which may be positive or negative. Output as at least two digits.

hh Count of hours, which may be positive or negative. Output as at least two
digits.

HH Hour of day, from 0 to 23. Output as exactly two digits.

MM Minute of hour, from 0 to 59. Output as exactly two digits.

SS.ss Seconds within minute, from 0 to 59. The integer part is output as exactly two
digits. On output, seconds and fractional seconds may or may not be included,
depending on field width and decimal places. On input, seconds and fractional
seconds are optional. The DECIMAL setting controls the character accepted
and displayed as the decimal point (see [SET DECIMAL], page 110).

For output, the date and time formats use the delimiters indicated in the table. For
input, date components may be separated by spaces or by one of the characters ‘-’, ‘/’,

Chapter 4: The PSPP language 21

‘.’, or ‘,’, and time components may be separated by spaces, ‘:’, or ‘.’. On input, the ‘Q’
separating quarter from year and the ‘WK’ separating week from year may be uppercase or
lowercase, and the spaces around them are optional.

On input, all time and date formats accept any amount of leading and trailing white
space.

The maximum width for time and date formats is 40 columns. Minimum input and
output width for each of the time and date formats is shown below:

Format Min. Input Width Min. Output Width Option
DATE 8 9 4-digit year
ADATE 8 8 4-digit year
EDATE 8 8 4-digit year
JDATE 5 5 4-digit year
SDATE 8 8 4-digit year
QYR 4 6 4-digit year
MOYR 6 6 4-digit year
WKYR 6 8 4-digit year
DATETIME 17 17 seconds
TIME 5 5 seconds
DTIME 8 8 seconds
In the table, “Option” describes what increased output width enables:

4-digit year
A field 2 columns wider than minimum will include a 4-digit year. (DATETIME
format always includes a 4-digit year.)

seconds A field 3 columns wider than minimum will include seconds as well as minutes.
A field 5 columns wider than minimum, or more, can also include a decimal
point and fractional seconds (but no more than allowed by the format’s decimal
places).

For the time and date formats, the default output format is the same as the input format,
except that PSPP increases the field width, if necessary, to the minimum allowed for output.

Time or dates narrower than the field width are right-justified within the field.
When a time or date exceeds the field width, characters are trimmed from the end until

it fits. This can occur in an unusual situation, e.g. with a year greater than 9999 (which
adds an extra digit), or for a negative value on TIME or DTIME (which adds a leading
minus sign).

The system-missing value is output as a period at the right end of the field.

4.7.4.6 Date Component Formats

The WKDAY and MONTH formats provide input and output for the names of weekdays
and months, respectively.

On output, these formats convert a number between 1 and 7, for WKDAY, or between 1
and 12, for MONTH, into the English name of a day or month, respectively. If the name is
longer than the field, it is trimmed to fit. If the name is shorter than the field, it is padded

Chapter 4: The PSPP language 22

on the right with spaces. Values outside the valid range, and the system-missing value, are
output as all spaces.

On input, English weekday or month names (in uppercase or lowercase) are converted
back to their corresponding numbers. Weekday and month names may be abbreviated to
their first 2 or 3 letters, respectively.

The field width may range from 2 to 40, for WKDAY, or from 3 to 40, for MONTH. No
decimal places are allowed.

The default output format is the same as the input format.

4.7.4.7 String Formats

The A and AHEX formats are the only ones that may be assigned to string variables.
Neither format allows any decimal places.

In A format, the entire field is treated as a string value. The field width may range from
1 to 32,767, the maximum string width. The default output format is the same as the input
format.

In AHEX format, the field is composed of characters in a string encoded as hex digit
pairs. On output, hex digits are output in uppercase; on input, uppercase and lowercase
are both accepted. The default output format is A format with half the input width.

4.7.5 Scratch Variables

Most of the time, variables don’t retain their values between cases. Instead, either they’re
being read from a data file or the active file, in which case they assume the value read,
or, if created with COMPUTE or another transformation, they’re initialized to the system-
missing value or to blanks, depending on type.

However, sometimes it’s useful to have a variable that keeps its value between cases.
You can do this with LEAVE (see Section 8.6 [LEAVE], page 71), or you can use a scratch
variable. Scratch variables are variables whose names begin with an octothorpe (‘#’).

Scratch variables have the same properties as variables left with LEAVE: they retain
their values between cases, and for the first case they are initialized to 0 or blanks. They
have the additional property that they are deleted before the execution of any procedure.
For this reason, scratch variables can’t be used for analysis. To use a scratch variable in an
analysis, use COMPUTE (see Section 9.3 [COMPUTE], page 80) to copy its value into an
ordinary variable, then use that ordinary variable in the analysis.

4.8 Files Used by PSPP

PSPP makes use of many files each time it runs. Some of these it reads, some it writes,
some it creates. Here is a table listing the most important of these files:

command file
syntax file These names (synonyms) refer to the file that contains instructions that tell

PSPP what to do. The syntax file’s name is specified on the PSPP command
line. Syntax files can also be read with INCLUDE (see Section 13.14 [IN-
CLUDE], page 107).

data file Data files contain raw data in text or binary format. Data can also be embedded
in a syntax file with BEGIN DATA and END DATA.

Chapter 4: The PSPP language 23

listing file One or more output files are created by PSPP each time it is run. The out-
put files receive the tables and charts produced by statistical procedures. The
output files may be in any number of formats, depending on how PSPP is
configured.

active file The active file is the “file” on which all PSPP procedures are performed. The
active file consists of a dictionary and a set of cases. The active file is not
necessarily a disk file: it is stored in memory if there is room.

system file
System files are binary files that store a dictionary and a set of cases. GET and
SAVE read and write system files.

portable file
Portable files are files in a text-based format that store a dictionary and a set
of cases. IMPORT and EXPORT read and write portable files.

scratch file
Scratch files consist of a dictionary and cases and may be stored in memory
or on disk. Most procedures that act on a system file or portable file can
use a scratch file instead. The contents of scratch files persist within a single
PSPP session only. GET and SAVE can be used to read and write scratch files.
Scratch files are a PSPP extension.

4.9 File Handles

A file handle is a reference to a data file, system file, portable file, or scratch file. Most
often, a file handle is specified as the name of a file as a string, that is, enclosed within ‘’’
or ‘"’.

A file name string that begins or ends with ‘|’ is treated as the name of a command to pipe
data to or from. You can use this feature to read data over the network using a program such
as ‘curl’ (e.g. GET ’|curl -s -S http://example.com/mydata.sav’), to read compressed
data from a file using a program such as ‘zcat’ (e.g. GET ’|zcat mydata.sav.gz’), and for
many other purposes.

PSPP also supports declaring named file handles with the FILE HANDLE command.
This command associates an identifier of your choice (the file handle’s name) with a file.
Later, the file handle name can be substituted for the name of the file. When PSPP syntax
accesses a file multiple times, declaring a named file handle simplifies updating the syntax
later to use a different file. Use of FILE HANDLE is also required to read data files in
binary formats. See Section 6.6 [FILE HANDLE], page 48, for more information.

PSPP assumes that a file handle name that begins with ‘#’ refers to a scratch file, unless
the name has already been declared on FILE HANDLE to refer to another kind of file.
A scratch file is similar to a system file, except that it persists only for the duration of a
given PSPP session. Most commands that read or write a system or portable file, such as
GET and SAVE, also accept scratch file handles. Scratch file handles may also be declared
explicitly with FILE HANDLE. Scratch files are a PSPP extension.

In some circumstances, PSPP must distinguish whether a file handle refers to a system
file or a portable file. When this is necessary to read a file, e.g. as an input file for GET or
MATCH FILES, PSPP uses the file’s contents to decide. In the context of writing a file,

Chapter 4: The PSPP language 24

e.g. as an output file for SAVE or AGGREGATE, PSPP decides based on the file’s name:
if it ends in ‘.por’ (with any capitalization), then PSPP writes a portable file; otherwise,
PSPP writes a system file.

INLINE is reserved as a file handle name. It refers to the “data file” embedded into
the syntax file between BEGIN DATA and END DATA. See Section 6.1 [BEGIN DATA],
page 43, for more information.

The file to which a file handle refers may be reassigned on a later FILE HANDLE
command if it is first closed using CLOSE FILE HANDLE. The CLOSE FILE HANDLE
command is also useful to free the storage associated with a scratch file. See Section 6.2
[CLOSE FILE HANDLE], page 43, for more information.

4.10 Backus-Naur Form

The syntax of some parts of the PSPP language is presented in this manual using the
formalism known as Backus-Naur Form, or BNF. The following table describes BNF:
• Words in all-uppercase are PSPP keyword tokens. In BNF, these are often called

terminals. There are some special terminals, which are written in lowercase for clarity:

number A real number.

integer An integer number.

string A string.

var-name A single variable name.

=, /, +, -, etc.
Operators and punctuators.

. The end of the command. This is not necessarily an actual dot in the
syntax file: See Section 4.2 [Commands], page 8, for more details.

• Other words in all lowercase refer to BNF definitions, called productions. These pro-
ductions are also known as nonterminals. Some nonterminals are very common, so they
are defined here in English for clarity:

var-list A list of one or more variable names or the keyword ALL.

expression
An expression. See Chapter 5 [Expressions], page 25, for details.

• ‘::=’ means “is defined as”. The left side of ‘::=’ gives the name of the nonterminal
being defined. The right side of ‘::=’ gives the definition of that nonterminal. If the
right side is empty, then one possible expansion of that nonterminal is nothing. A BNF
definition is called a production.

• So, the key difference between a terminal and a nonterminal is that a terminal cannot
be broken into smaller parts—in fact, every terminal is a single token (see Section 4.1
[Tokens], page 7). On the other hand, nonterminals are composed of a (possibly empty)
sequence of terminals and nonterminals. Thus, terminals indicate the deepest level of
syntax description. (In parsing theory, terminals are the leaves of the parse tree;
nonterminals form the branches.)

• The first nonterminal defined in a set of productions is called the start symbol. The
start symbol defines the entire syntax for that command.

Chapter 5: Mathematical Expressions 25

5 Mathematical Expressions

Expressions share a common syntax each place they appear in PSPP commands. Expres-
sions are made up of operands, which can be numbers, strings, or variable names, separated
by operators. There are five types of operators: grouping, arithmetic, logical, relational,
and functions.

Every operator takes one or more operands as input and yields exactly one result as
output. Depending on the operator, operands accept strings or numbers as operands. With
few exceptions, operands may be full-fledged expressions in themselves.

5.1 Boolean Values

Some PSPP operators and expressions work with Boolean values, which represent true/false
conditions. Booleans have only three possible values: 0 (false), 1 (true), and system-missing
(unknown). System-missing is neither true nor false and indicates that the true value is
unknown.

Boolean-typed operands or function arguments must take on one of these three values.
Other values are considered false, but provoke a warning when the expression is evaluated.

Strings and Booleans are not compatible, and neither may be used in place of the other.

5.2 Missing Values in Expressions

Most numeric operators yield system-missing when given any system-missing operand. A
string operator given any system-missing operand typically results in the empty string.
Exceptions are listed under particular operator descriptions.

String user-missing values are not treated specially in expressions.
User-missing values for numeric variables are always transformed into the system-missing

value, except inside the arguments to the VALUE and SYSMIS functions.
The missing-value functions can be used to precisely control how missing values are

treated in expressions. See Section 5.7.4 [Missing Value Functions], page 28, for more
details.

5.3 Grouping Operators

Parentheses (‘()’) are the grouping operators. Surround an expression with parentheses to
force early evaluation.

Parentheses also surround the arguments to functions, but in that situation they act as
punctuators, not as operators.

5.4 Arithmetic Operators

The arithmetic operators take numeric operands and produce numeric results.

a + b Yields the sum of a and b.

a - b Subtracts b from a and yields the difference.

a * b Yields the product of a and b. If either a or b is 0, then the result is 0, even if
the other operand is missing.

Chapter 5: Mathematical Expressions 26

a / b Divides a by b and yields the quotient. If a is 0, then the result is 0, even if b
is missing. If b is zero, the result is system-missing.

a ** b Yields the result of raising a to the power b. If a is negative and b is not an
integer, the result is system-missing. The result of 0**0 is system-missing as
well.

- a Reverses the sign of a.

5.5 Logical Operators

The logical operators take logical operands and produce logical results, meaning “true or
false.” Logical operators are not true Boolean operators because they may also result in a
system-missing value. See Section 5.1 [Boolean Values], page 25, for more information.

a AND b

a & b True if both a and b are true, false otherwise. If one operand is false, the result
is false even if the other is missing. If both operands are missing, the result is
missing.

a OR b

a | b True if at least one of a and b is true. If one operand is true, the result is true
even if the other operand is missing. If both operands are missing, the result is
missing.

NOT a

~ a True if a is false. If the operand is missing, then the result is missing.

5.6 Relational Operators

The relational operators take numeric or string operands and produce Boolean results.
Strings cannot be compared to numbers. When strings of different lengths are compared,

the shorter string is right-padded with spaces to match the length of the longer string.
The results of string comparisons, other than tests for equality or inequality, depend on

the character set in use. String comparisons are case-sensitive.

a EQ b

a = b True if a is equal to b.

a LE b

a <= b True if a is less than or equal to b.

a LT b

a < b True if a is less than b.

a GE b

a >= b True if a is greater than or equal to b.

a GT b

a > b True if a is greater than b.

a NE b

a ~= b

a <> b True if a is not equal to b.

Chapter 5: Mathematical Expressions 27

5.7 Functions

PSPP functions provide mathematical abilities above and beyond those possible using sim-
ple operators. Functions have a common syntax: each is composed of a function name
followed by a left parenthesis, one or more arguments, and a right parenthesis.

Function names are not reserved. Their names are specially treated only when followed
by a left parenthesis, so that EXP(10) refers to the constant value e raised to the 10th
power, but EXP by itself refers to the value of variable EXP.

The sections below describe each function in detail.

5.7.1 Mathematical Functions

Advanced mathematical functions take numeric arguments and produce numeric results.

[Function]EXP (exponent)
Returns e (approximately 2.71828) raised to power exponent.

[Function]LG10 (number)
Takes the base-10 logarithm of number. If number is not positive, the result is
system-missing.

[Function]LN (number)
Takes the base-e logarithm of number. If number is not positive, the result is system-
missing.

[Function]LNGAMMA (number)
Yields the base-e logarithm of the complete gamma of number. If number is a negative
integer, the result is system-missing.

[Function]SQRT (number)
Takes the square root of number. If number is negative, the result is system-missing.

5.7.2 Miscellaneous Mathematical Functions

Miscellaneous mathematical functions take numeric arguments and produce numeric results.

[Function]ABS (number)
Results in the absolute value of number.

[Function]MOD (numerator, denominator)
Returns the remainder (modulus) of numerator divided by denominator. If numerator
is 0, then the result is 0, even if denominator is missing. If denominator is 0, the
result is system-missing.

[Function]MOD10 (number)
Returns the remainder when number is divided by 10. If number is negative,
MOD10(number) is negative or zero.

[Function]RND (number)
Takes the absolute value of number and rounds it to an integer. Then, if number was
negative originally, negates the result.

[Function]TRUNC (number)
Discards the fractional part of number; that is, rounds number towards zero.

Chapter 5: Mathematical Expressions 28

5.7.3 Trigonometric Functions

Trigonometric functions take numeric arguments and produce numeric results.

[Function]ARCOS (number)
[Function]ACOS (number)

Takes the arccosine, in radians, of number. Results in system-missing if number is
not between -1 and 1 inclusive. This function is a PSPP extension.

[Function]ARSIN (number)
[Function]ASIN (number)

Takes the arcsine, in radians, of number. Results in system-missing if number is not
between -1 and 1 inclusive.

[Function]ARTAN (number)
[Function]ATAN (number)

Takes the arctangent, in radians, of number.

[Function]COS (angle)
Takes the cosine of angle which should be in radians.

[Function]SIN (angle)
Takes the sine of angle which should be in radians.

[Function]TAN (angle)
Takes the tangent of angle which should be in radians. Results in system-missing at
values of angle that are too close to odd multiples of pi/2. Portability: none.

5.7.4 Missing-Value Functions

Missing-value functions take various numeric arguments and yield various types of results.
Except where otherwise stated below, the normal rules of evaluation apply within expression
arguments to these functions. In particular, user-missing values for numeric variables are
converted to system-missing values.

[Function]MISSING (expr)
Returns 1 if expr has the system-missing value, 0 otherwise.

[Function]NMISS (expr [, expr]. . .)
Each argument must be a numeric expression. Returns the number of system-missing
values in the list, which may include variable ranges using the var1 TO var2 syntax.

[Function]NVALID (expr [, expr]. . .)
Each argument must be a numeric expression. Returns the number of values in the
list that are not system-missing. The list may include variable ranges using the var1

TO var2 syntax.

[Function]SYSMIS (expr)
When expr is simply the name of a numeric variable, returns 1 if the variable has
the system-missing value, 0 if it is user-missing or not missing. If given expr takes
another form, results in 1 if the value is system-missing, 0 otherwise.

Chapter 5: Mathematical Expressions 29

[Function]VALUE (variable)
Prevents the user-missing values of variable from being transformed into system-
missing values, and always results in the actual value of variable, whether it is valid,
user-missing, or system-missing.

5.7.5 Set-Membership Functions

Set membership functions determine whether a value is a member of a set. They take a set
of numeric arguments or a set of string arguments, and produce Boolean results.

String comparisons are performed according to the rules given in Section 5.6 [Relational
Operators], page 26.

[Function]ANY (value, set [, set]. . .)
Results in true if value is equal to any of the set values. Otherwise, results in false.
If value is system-missing, returns system-missing. System-missing values in set do
not cause ANY to return system-missing.

[Function]RANGE (value, low, high [, low, high]. . .)
Results in true if value is in any of the intervals bounded by low and high inclusive.
Otherwise, results in false. Each low must be less than or equal to its corresponding
high value. low and high must be given in pairs. If value is system-missing, returns
system-missing. System-missing values in set do not cause RANGE to return system-
missing.

5.7.6 Statistical Functions

Statistical functions compute descriptive statistics on a list of values. Some statistics can
be computed on numeric or string values; other can only be computed on numeric values.
Their results have the same type as their arguments. The current case’s weighting factor
(see Section 10.7 [WEIGHT], page 88) has no effect on statistical functions.

These functions’ argument lists may include entire ranges of variables using the var1 TO
var2 syntax.

Unlike most functions, statistical functions can return non-missing values even when
some of their arguments are missing. Most statistical functions, by default, require only 1
non-missing value to have a non-missing return, but CFVAR, SD, and VARIANCE require
2. These defaults can be increased (but not decreased) by appending a dot and the minimum
number of valid arguments to the function name. For example, MEAN.3(X, Y, Z) would only
return non-missing if all of ‘X’, ‘Y’, and ‘Z’ were valid.

[Function]CFVAR (number, number [, . . .])
Results in the coefficient of variation of the values of number. (The coefficient of
variation is the standard deviation divided by the mean.)

[Function]MAX (value, value [, . . .])
Results in the value of the greatest value. The values may be numeric or string.

[Function]MEAN (number, number [, . . .])
Results in the mean of the values of number.

[Function]MIN (number, number [, . . .])
Results in the value of the least value. The values may be numeric or string.

Chapter 5: Mathematical Expressions 30

[Function]SD (number, number [, . . .])
Results in the standard deviation of the values of number.

[Function]SUM (number, number [, . . .])
Results in the sum of the values of number.

[Function]VARIANCE (number, number [, . . .])
Results in the variance of the values of number.

5.7.7 String Functions

String functions take various arguments and return various results.

[Function]CONCAT (string, string [, . . .])
Returns a string consisting of each string in sequence. CONCAT("abc", "def",
"ghi") has a value of "abcdefghi". The resultant string is truncated to a maximum
of 255 characters.

[Function]INDEX (haystack, needle)
Returns a positive integer indicating the position of the first occurrence of needle in
haystack. Returns 0 if haystack does not contain needle. Returns system-missing if
needle is an empty string.

[Function]INDEX (haystack, needles, needle_len)
Divides needles into one or more needles, each with length needle len. Searches
haystack for the first occurrence of each needle, and returns the smallest value. Re-
turns 0 if haystack does not contain any part in needle. It is an error if needle len
does not evenly divide the length of needles. Returns system-missing if needles is an
empty string.

[Function]LENGTH (string)
Returns the number of characters in string.

[Function]LOWER (string)
Returns a string identical to string except that all uppercase letters are changed
to lowercase letters. The definitions of “uppercase” and “lowercase” are system-
dependent.

[Function]LPAD (string, length)
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with spaces on the left side to length length. Returns an empty
string if length is system-missing, negative, or greater than 255.

[Function]LPAD (string, length, padding)
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with padding on the left side to length length. Returns an
empty string if length is system-missing, negative, or greater than 255, or if padding
does not contain exactly one character.

[Function]LTRIM (string)
Returns string, after removing leading spaces. Other white space, such as tabs, car-
riage returns, line feeds, and vertical tabs, is not removed.

Chapter 5: Mathematical Expressions 31

[Function]LTRIM (string, padding)
Returns string, after removing leading padding characters. If padding does not con-
tain exactly one character, returns an empty string.

[Function]NUMBER (string, format)
Returns the number produced when string is interpreted according to format specifier
format. If the format width w is less than the length of string, then only the first w
characters in string are used, e.g. NUMBER("123", F3.0) and NUMBER("1234", F3.0)
both have value 123. If w is greater than string ’s length, then it is treated as if
it were right-padded with spaces. If string is not in the correct format for format,
system-missing is returned.

[Function]RINDEX (string, format)
Returns a positive integer indicating the position of the last occurrence of needle in
haystack. Returns 0 if haystack does not contain needle. Returns system-missing if
needle is an empty string.

[Function]RINDEX (haystack, needle, needle_len)
Divides needle into parts, each with length needle len. Searches haystack for the last
occurrence of each part, and returns the largest value. Returns 0 if haystack does
not contain any part in needle. It is an error if needle len does not evenly divide the
length of needle. Returns system-missing if needle is an empty string.

[Function]RPAD (string, length)
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with spaces on the right to length length. Returns an empty
string if length is system-missing, negative, or greater than 255.

[Function]RPAD (string, length, padding)
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with padding on the right to length length. Returns an empty
string if length is system-missing, negative, or greater than 255, or if padding does
not contain exactly one character.

[Function]RTRIM (string)
Returns string, after removing trailing spaces. Other types of white space are not
removed.

[Function]RTRIM (string, padding)
Returns string, after removing trailing padding characters. If padding does not con-
tain exactly one character, returns an empty string.

[Function]STRING (number, format)
Returns a string corresponding to number in the format given by format specifier
format. For example, STRING(123.56, F5.1) has the value "123.6".

[Function]SUBSTR (string, start)
Returns a string consisting of the value of string from position start onward. Returns
an empty string if start is system-missing, less than 1, or greater than the length of
string.

Chapter 5: Mathematical Expressions 32

[Function]SUBSTR (string, start, count)
Returns a string consisting of the first count characters from string beginning at
position start. Returns an empty string if start or count is system-missing, if start is
less than 1 or greater than the number of characters in string, or if count is less than
1. Returns a string shorter than count characters if start + count - 1 is greater than
the number of characters in string. Examples: SUBSTR("abcdefg", 3, 2) has value
"cd"; SUBSTR("nonsense", 4, 10) has the value "sense".

[Function]UPCASE (string)
Returns string, changing lowercase letters to uppercase letters.

5.7.8 Time & Date Functions

For compatibility, PSPP considers dates before 15 Oct 1582 invalid. Most time and date
functions will not accept earlier dates.

5.7.8.1 How times & dates are defined and represented

Times and dates are handled by PSPP as single numbers. A time is an interval. PSPP
measures times in seconds. Thus, the following intervals correspond with the numeric values
given:

10 minutes 600
1 hour 3,600
1 day, 3 hours, 10 seconds 97,210
40 days 3,456,000

A date, on the other hand, is a particular instant in the past or the future. PSPP
represents a date as a number of seconds since midnight preceding 14 Oct 1582. Because
midnight preceding the dates given below correspond with the numeric PSPP dates given:

15 Oct 1582 86,400
4 Jul 1776 6,113,318,400
1 Jan 1900 10,010,390,400
1 Oct 1978 12,495,427,200
24 Aug 1995 13,028,601,600

5.7.8.2 Functions that Produce Times

These functions take numeric arguments and return numeric values that represent times.

[Function]TIME.DAYS (ndays)
Returns a time corresponding to ndays days.

[Function]TIME.HMS (nhours, nmins, nsecs)
Returns a time corresponding to nhours hours, nmins minutes, and nsecs seconds.
The arguments may not have mixed signs: if any of them are positive, then none may
be negative, and vice versa.

5.7.8.3 Functions that Examine Times

These functions take numeric arguments in PSPP time format and give numeric results.

[Function]CTIME.DAYS (time)
Results in the number of days and fractional days in time.

Chapter 5: Mathematical Expressions 33

[Function]CTIME.HOURS (time)
Results in the number of hours and fractional hours in time.

[Function]CTIME.MINUTES (time)
Results in the number of minutes and fractional minutes in time.

[Function]CTIME.SECONDS (time)
Results in the number of seconds and fractional seconds in time. (CTIME.SECONDS
does nothing; CTIME.SECONDS(x) is equivalent to x .)

5.7.8.4 Functions that Produce Dates

These functions take numeric arguments and give numeric results that represent dates.
Arguments taken by these functions are:

day Refers to a day of the month between 1 and 31. Day 0 is also accepted and
refers to the final day of the previous month. Days 29, 30, and 31 are accepted
even in months that have fewer days and refer to a day near the beginning of
the following month.

month Refers to a month of the year between 1 and 12. Months 0 and 13 are also
accepted and refer to the last month of the preceding year and the first month
of the following year, respectively.

quarter Refers to a quarter of the year between 1 and 4. The quarters of the year begin
on the first day of months 1, 4, 7, and 10.

week Refers to a week of the year between 1 and 53.

yday Refers to a day of the year between 1 and 366.

year Refers to a year, 1582 or greater. Years between 0 and 99 are treated according
to the epoch set on SET EPOCH, by default beginning 69 years before the
current date (see [SET EPOCH], page 110).

If these functions’ arguments are out-of-range, they are correctly normalized before con-
version to date format. Non-integers are rounded toward zero.

[Function]DATE.DMY (day, month, year)
[Function]DATE.MDY (month, day, year)

Results in a date value corresponding to the midnight before day day of month month
of year year.

[Function]DATE.MOYR (month, year)
Results in a date value corresponding to the midnight before the first day of month
month of year year.

[Function]DATE.QYR (quarter, year)
Results in a date value corresponding to the midnight before the first day of quarter
quarter of year year.

[Function]DATE.WKYR (week, year)
Results in a date value corresponding to the midnight before the first day of week
week of year year.

Chapter 5: Mathematical Expressions 34

[Function]DATE.YRDAY (year, yday)
Results in a date value corresponding to the day yday of year year.

5.7.8.5 Functions that Examine Dates

These functions take numeric arguments in PSPP date or time format and give numeric
results. These names are used for arguments:

date A numeric value in PSPP date format.

time A numeric value in PSPP time format.

time-or-date
A numeric value in PSPP time or date format.

[Function]XDATE.DATE (time-or-date)
For a time, results in the time corresponding to the number of whole days date-or-
time includes. For a date, results in the date corresponding to the latest midnight at
or before date-or-time; that is, gives the date that date-or-time is in.

[Function]XDATE.HOUR (time-or-date)
For a time, results in the number of whole hours beyond the number of whole days
represented by date-or-time. For a date, results in the hour (as an integer between 0
and 23) corresponding to date-or-time.

[Function]XDATE.JDAY (date)
Results in the day of the year (as an integer between 1 and 366) corresponding to
date.

[Function]XDATE.MDAY (date)
Results in the day of the month (as an integer between 1 and 31) corresponding to
date.

[Function]XDATE.MINUTE (time-or-date)
Results in the number of minutes (as an integer between 0 and 59) after the last hour
in time-or-date.

[Function]XDATE.MONTH (date)
Results in the month of the year (as an integer between 1 and 12) corresponding to
date.

[Function]XDATE.QUARTER (date)
Results in the quarter of the year (as an integer between 1 and 4) corresponding to
date.

[Function]XDATE.SECOND (time-or-date)
Results in the number of whole seconds after the last whole minute (as an integer
between 0 and 59) in time-or-date.

[Function]XDATE.TDAY (date)
Results in the number of whole days from 14 Oct 1582 to date.

Chapter 5: Mathematical Expressions 35

[Function]XDATE.TIME (date)
Results in the time of day at the instant corresponding to date, as a time value. This
is the number of seconds since midnight on the day corresponding to date.

[Function]XDATE.WEEK (date)
Results in the week of the year (as an integer between 1 and 53) corresponding to
date.

[Function]XDATE.WKDAY (date)
Results in the day of week (as an integer between 1 and 7) corresponding to date,
where 1 represents Sunday.

[Function]XDATE.YEAR (date)
Returns the year (as an integer 1582 or greater) corresponding to date.

5.7.8.6 Time and Date Arithmetic

Ordinary arithmetic operations on dates and times often produce sensible results. Adding
a time to, or subtracting one from, a date produces a new date that much earlier or later.
The difference of two dates yields the time between those dates. Adding two times produces
the combined time. Multiplying a time by a scalar produces a time that many times longer.
Since times and dates are just numbers, the ordinary addition and subtraction operators
are employed for these purposes.

Adding two dates does not produce a useful result.
Dates and times may have very large values. Thus, it is not a good idea to take powers

of these values; also, the accuracy of some procedures may be affected. If necessary, convert
times or dates in seconds to some other unit, like days or years, before performing analysis.

PSPP supplies a few functions for date arithmetic:

[Function]DATEDIFF (date2, date1, unit)
Returns the span of time from date1 to date2 in terms of unit, which must be a quoted
string, one of ‘years’, ‘quarters’, ‘months’, ‘weeks’, ‘days’, ‘hours’, ‘minutes’, and
‘seconds’. The result is an integer, truncated toward zero.
One year is considered to span from a given date to the same month, day, and time of
day the next year. Thus, from Jan. 1 of one year to Jan. 1 the next year is considered
to be a full year, but Feb. 29 of a leap year to the following Feb. 28 is not. Similarly,
one month spans from a given day of the month to the same day of the following
month. Thus, there is never a full month from Jan. 31 of a given year to any day in
the following February.

[Function]DATESUM (date, quantity, unit [, method])
Returns date advanced by the given quantity of the specified unit, which must be
one of the strings ‘years’, ‘quarters’, ‘months’, ‘weeks’, ‘days’, ‘hours’, ‘minutes’,
and ‘seconds’.
When unit is ‘years’, ‘quarters’, or ‘months’, only the integer part of quantity is
considered. Adding one of these units can cause the day of the month to exceed
the number of days in the month. In this case, the method comes into play: if it is
omitted or specified as ‘closest’ (as a quoted string), then the resulting day is the

Chapter 5: Mathematical Expressions 36

last day of the month; otherwise, if it is specified as ‘rollover’, then the extra days
roll over into the following month.
When unit is ‘weeks’, ‘days’, ‘hours’, ‘minutes’, or ‘seconds’, the quantity is not
rounded to an integer and method, if specified, is ignored.

5.7.9 Miscellaneous Functions

[Function]LAG (variable [, n])
variable must be a numeric or string variable name. LAG yields the value of that
variable for the case n before the current one. Results in system-missing (for numeric
variables) or blanks (for string variables) for the first n cases.
LAG obtains values from the cases that become the new active file after a procedure
executes. Thus, LAG will not return values from cases dropped by transformations such
as SELECT IF, and transformations like COMPUTE that modify data will change
the values returned by LAG. These are both the case whether these transformations
precede or follow the use of LAG.
If LAG is used before TEMPORARY, then the values it returns are those in cases just
before TEMPORARY. LAG may not be used after TEMPORARY.
If omitted, ncases defaults to 1. Otherwise, ncases must be a small positive constant
integer. There is no explicit limit, but use of a large value will increase memory
consumption.

[Function]YRMODA (year, month, day)
year is a year, either between 0 and 99 or at least 1582. Unlike other PSPP date
functions, years between 0 and 99 always correspond to 1900 through 1999. month
is a month between 1 and 13. day is a day between 0 and 31. A day of 0 refers to
the last day of the previous month, and a month of 13 refers to the first month of the
next year. year must be in range. year, month, and day must all be integers.
YRMODA results in the number of days between 15 Oct 1582 and the date specified,
plus one. The date passed to YRMODA must be on or after 15 Oct 1582. 15 Oct 1582
has a value of 1.

[Function]VALUELABEL (variable)
Returns a string matching the label associated with the current value of variable. If
the current value of variable has no associated label, then this function returns the
empty string. variable may be a numeric or string variable.

5.7.10 Statistical Distribution Functions

PSPP can calculate several functions of standard statistical distributions. These functions
are named systematically based on the function and the distribution. The table below
describes the statistical distribution functions in general:

PDF.dist (x[, param. . .])
Probability density function for dist. The domain of x depends on dist. For
continuous distributions, the result is the density of the probability function at
x, and the range is nonnegative real numbers. For discrete distributions, the
result is the probability of x.

Chapter 5: Mathematical Expressions 37

CDF.dist (x[, param. . .])
Cumulative distribution function for dist, that is, the probability that a random
variate drawn from the distribution is less than x. The domain of x depends
dist. The result is a probability.

SIG.dist (x[, param. . .)
Tail probability function for dist, that is, the probability that a random variate
drawn from the distribution is greater than x. The domain of x depends dist.
The result is a probability. Only a few distributions include an SIG function.

IDF.dist (p[, param. . .])
Inverse distribution function for dist, the value of x for which the CDF would
yield p. The value of p is a probability. The range depends on dist and is
identical to the domain for the corresponding CDF.

RV.dist ([param. . .])
Random variate function for dist. The range depends on the distribution.

NPDF.dist (x[, param. . .])
Noncentral probability density function. The result is the density of the given
noncentral distribution at x. The domain of x depends on dist. The range is
nonnegative real numbers. Only a few distributions include an NPDF function.

NCDF.dist (x[, param. . .])
Noncentral cumulative distribution function for dist, that is, the probability
that a random variate drawn from the given noncentral distribution is less than
x. The domain of x depends dist. The result is a probability. Only a few
distributions include an NCDF function.

The individual distributions are described individually below.

5.7.10.1 Continuous Distributions

The following continuous distributions are available:

[Function]PDF.BETA (x)
[Function]CDF.BETA (x, a, b)
[Function]IDF.BETA (p, a, b)
[Function]RV.BETA (a, b)
[Function]NPDF.BETA (x, a, b, lambda)
[Function]NCDF.BETA (x, a, b, lambda)

Beta distribution with shape parameters a and b. The noncentral distribution takes
an additional parameter lambda. Constraints: a > 0, b > 0, lambda >= 0, 0 <= x <=
1, 0 <= p <= 1.

[Function]PDF.BVNOR (x0, x1, rho)
[Function]CDF.VBNOR (x0, x1, rho)

Bivariate normal distribution of two standard normal variables with correlation coef-
ficient rho. Two variates x0 and x1 must be provided. Constraints: 0 <= rho <= 1,
0 <= p <= 1.

Chapter 5: Mathematical Expressions 38

[Function]PDF.CAUCHY (x, a, b)
[Function]CDF.CAUCHY (x, a, b)
[Function]IDF.CAUCHY (p, a, b)
[Function]RV.CAUCHY (a, b)

Cauchy distribution with location parameter a and scale parameter b. Constraints:
b > 0, 0 < p < 1.

[Function]PDF.CHISQ (x, df)
[Function]CDF.CHISQ (x, df)
[Function]SIG.CHISQ (x, df)
[Function]IDF.CHISQ (p, df)
[Function]RV.CHISQ (df)
[Function]NPDF.CHISQ (x, df, lambda)
[Function]NCDF.CHISQ (x, df, lambda)

Chi-squared distribution with df degrees of freedom. The noncentral distribution
takes an additional parameter lambda. Constraints: df > 0, lambda > 0, x >= 0, 0
<= p < 1.

[Function]PDF.EXP (x, a)
[Function]CDF.EXP (x, a)
[Function]IDF.EXP (p, a)
[Function]RV.EXP (a)

Exponential distribution with scale parameter a. The inverse of a represents the rate
of decay. Constraints: a > 0, x >= 0, 0 <= p < 1.

[Function]PDF.XPOWER (x, a, b)
[Function]RV.XPOWER (a, b)

Exponential power distribution with positive scale parameter a and nonnegative power
parameter b. Constraints: a > 0, b >= 0, x >= 0, 0 <= p <= 1. This distribution is
a PSPP extension.

[Function]PDF.F (x, df1, df2)
[Function]CDF.F (x, df1, df2)
[Function]SIG.F (x, df1, df2)
[Function]IDF.F (p, df1, df2)
[Function]RV.F (df1, df2)
[Function]NPDF.F (x, df1, df2, lambda)
[Function]NCDF.F (x, df1, df2, lambda)

F-distribution of two chi-squared deviates with df1 and df2 degrees of freedom. The
noncentral distribution takes an additional parameter lambda. Constraints: df1 > 0,
df2 > 0, lambda >= 0, x >= 0, 0 <= p < 1.

[Function]PDF.GAMMA (x, a, b)
[Function]CDF.GAMMA (x, a, b)
[Function]IDF.GAMMA (p, a, b)
[Function]RV.GAMMA (a, b)

Gamma distribution with shape parameter a and scale parameter b. Constraints: a
> 0, b > 0, x >= 0, 0 <= p < 1.

Chapter 5: Mathematical Expressions 39

[Function]PDF.HALFNRM (x, a, b)
[Function]CDF.HALFNRM (x, a, b)
[Function]IDF.HALFNRM (p, a, b)
[Function]RV.HALFNRM (a, b)

Half-normal distribution with location parameter a and shape parameter b. Con-
straints: b > 0, 0 < p < 1.

[Function]PDF.IGAUSS (x, a, b)
[Function]CDF.IGAUSS (x, a, b)
[Function]IDF.IGAUSS (p, a, b)
[Function]RV.IGAUSS (a, b)

Inverse Gaussian distribution with parameters a and b. Constraints: a > 0, b > 0, x
> 0, 0 <= p < 1.

[Function]PDF.LANDAU (x)
[Function]RV.LANDAU ()

Landau distribution.

[Function]PDF.LAPLACE (x, a, b)
[Function]CDF.LAPLACE (x, a, b)
[Function]IDF.LAPLACE (p, a, b)
[Function]RV.LAPLACE (a, b)

Laplace distribution with location parameter a and scale parameter b. Constraints:
b > 0, 0 < p < 1.

[Function]RV.LEVY (c, alpha)
Levy symmetric alpha-stable distribution with scale c and exponent alpha. Con-
straints: 0 < alpha <= 2.

[Function]RV.LVSKEW (c, alpha, beta)
Levy skew alpha-stable distribution with scale c, exponent alpha, and skewness pa-
rameter beta. Constraints: 0 < alpha <= 2, -1 <= beta <= 1.

[Function]PDF.LOGISTIC (x, a, b)
[Function]CDF.LOGISTIC (x, a, b)
[Function]IDF.LOGISTIC (p, a, b)
[Function]RV.LOGISTIC (a, b)

Logistic distribution with location parameter a and scale parameter b. Constraints:
b > 0, 0 < p < 1.

[Function]PDF.LNORMAL (x, a, b)
[Function]CDF.LNORMAL (x, a, b)
[Function]IDF.LNORMAL (p, a, b)
[Function]RV.LNORMAL (a, b)

Lognormal distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0,
0 <= p < 1.

[Function]PDF.NORMAL (x, mu, sigma)
[Function]CDF.NORMAL (x, mu, sigma)

Chapter 5: Mathematical Expressions 40

[Function]IDF.NORMAL (p, mu, sigma)
[Function]RV.NORMAL (mu, sigma)

Normal distribution with mean mu and standard deviation sigma. Constraints: b >
0, 0 < p < 1. Three additional functions are available as shorthand:

[Function]CDFNORM (x)
Equivalent to CDF.NORMAL(x, 0, 1).

[Function]PROBIT (p)
Equivalent to IDF.NORMAL(p, 0, 1).

[Function]NORMAL (sigma)
Equivalent to RV.NORMAL(0, sigma).

[Function]PDF.NTAIL (x, a, sigma)
[Function]RV.NTAIL (a, sigma)

Normal tail distribution with lower limit a and standard deviation sigma. This dis-
tribution is a PSPP extension. Constraints: a > 0, x > a, 0 < p < 1.

[Function]PDF.PARETO (x, a, b)
[Function]CDF.PARETO (x, a, b)
[Function]IDF.PARETO (p, a, b)
[Function]RV.PARETO (a, b)

Pareto distribution with threshold parameter a and shape parameter b. Constraints:
a > 0, b > 0, x >= a, 0 <= p < 1.

[Function]PDF.RAYLEIGH (x, sigma)
[Function]CDF.RAYLEIGH (x, sigma)
[Function]IDF.RAYLEIGH (p, sigma)
[Function]RV.RAYLEIGH (sigma)

Rayleigh distribution with scale parameter sigma. This distribution is a PSPP ex-
tension. Constraints: sigma > 0, x > 0.

[Function]PDF.RTAIL (x, a, sigma)
[Function]RV.RTAIL (a, sigma)

Rayleigh tail distribution with lower limit a and scale parameter sigma. This distri-
bution is a PSPP extension. Constraints: a > 0, sigma > 0, x > a.

[Function]CDF.SMOD (x, a, b)
[Function]IDF.SMOD (p, a, b)

Studentized maximum modulus distribution with parameters a and b. Constraints:
a > 0, b > 0, x > 0, 0 <= p < 1.

[Function]CDF.SRANGE (x, a, b)
[Function]IDF.SRANGE (p, a, b)

Studentized range distribution with parameters a and b. Constraints: a >= 1, b >=
1, x > 0, 0 <= p < 1.

[Function]PDF.T (x, df)
[Function]CDF.T (x, df)

Chapter 5: Mathematical Expressions 41

[Function]IDF.T (p, df)
[Function]RV.T (df)
[Function]NPDF.T (x, df, lambda)
[Function]NCDF.T (x, df, lambda)

T-distribution with df degrees of freedom. The noncentral distribution takes an
additional parameter lambda. Constraints: df > 0, 0 < p < 1.

[Function]PDF.T1G (x, a, b)
[Function]CDF.T1G (x, a, b)
[Function]IDF.T1G (p, a, b)

Type-1 Gumbel distribution with parameters a and b. This distribution is a PSPP
extension. Constraints: 0 < p < 1.

[Function]PDF.T2G (x, a, b)
[Function]CDF.T2G (x, a, b)
[Function]IDF.T2G (p, a, b)

Type-2 Gumbel distribution with parameters a and b. This distribution is a PSPP
extension. Constraints: x > 0, 0 < p < 1.

[Function]PDF.UNIFORM (x, a, b)
[Function]CDF.UNIFORM (x, a, b)
[Function]IDF.UNIFORM (p, a, b)
[Function]RV.UNIFORM (a, b)

Uniform distribution with parameters a and b. Constraints: a <= x <= b, 0 <= p
<= 1. An additional function is available as shorthand:

[Function]UNIFORM (b)
Equivalent to RV.UNIFORM(0, b).

[Function]PDF.WEIBULL (x, a, b)
[Function]CDF.WEIBULL (x, a, b)
[Function]IDF.WEIBULL (p, a, b)
[Function]RV.WEIBULL (a, b)

Weibull distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0, 0
<= p < 1.

5.7.10.2 Discrete Distributions

The following discrete distributions are available:

[Function]PDF.BERNOULLI (x)
[Function]CDF.BERNOULLI (x, p)
[Function]RV.BERNOULLI (p)

Bernoulli distribution with probability of success p. Constraints: x = 0 or 1, 0 <= p
<= 1.

[Function]PDF.BINOMIAL (x, n, p)
[Function]CDF.BINOMIAL (x, n, p)
[Function]RV.BINOMIAL (n, p)

Binomial distribution with n trials and probability of success p. Constraints: integer
n > 0, 0 <= p <= 1, integer x <= n.

Chapter 5: Mathematical Expressions 42

[Function]PDF.GEOM (x, n, p)
[Function]CDF.GEOM (x, n, p)
[Function]RV.GEOM (n, p)

Geometric distribution with probability of success p. Constraints: 0 <= p <= 1,
integer x > 0.

[Function]PDF.HYPER (x, a, b, c)
[Function]CDF.HYPER (x, a, b, c)
[Function]RV.HYPER (a, b, c)

Hypergeometric distribution when b objects out of a are drawn and c of the available
objects are distinctive. Constraints: integer a > 0, integer b <= a, integer c <= a,
integer x >= 0.

[Function]PDF.LOG (x, p)
[Function]RV.LOG (p)

Logarithmic distribution with probability parameter p. Constraints: 0 <= p < 1, x
>= 1.

[Function]PDF.NEGBIN (x, n, p)
[Function]CDF.NEGBIN (x, n, p)
[Function]RV.NEGBIN (n, p)

Negative binomial distribution with number of successes paramter n and probability
of success parameter p. Constraints: integer n >= 0, 0 < p <= 1, integer x >= 1.

[Function]PDF.POISSON (x, mu)
[Function]CDF.POISSON (x, mu)
[Function]RV.POISSON (mu)

Poisson distribution with mean mu. Constraints: mu > 0, integer x >= 0.

5.8 Operator Precedence

The following table describes operator precedence. Smaller-numbered levels in the table
have higher precedence. Within a level, operations are always performed from left to right.
The first occurrence of ‘-’ represents unary negation, the second binary subtraction.
1. ()

2. **

3. -

4. * /

5. + -

6. EQ GE GT LE LT NE

7. AND NOT OR

Chapter 6: Data Input and Output 43

6 Data Input and Output

Data are the focus of the PSPP language. Each datum belongs to a case (also called an
observation). Each case represents an individual or “experimental unit”. For example, in
the results of a survey, the names of the respondents, their sex, age, etc. and their responses
are all data and the data pertaining to single respondent is a case. This chapter examines the
PSPP commands for defining variables and reading and writing data. There are alternative
commands to read data from predefined sources such as system files or databases (See
Section 7.3 [GET], page 59.)

Note: These commands tell PSPP how to read data, but the data will not
actually be read until a procedure is executed.

6.1 BEGIN DATA

BEGIN DATA.
. . .
END DATA.

BEGIN DATA and END DATA can be used to embed raw ASCII data in a PSPP
syntax file. DATA LIST or another input procedure must be used before BEGIN DATA
(see Section 6.3 [DATA LIST], page 43). BEGIN DATA and END DATA must be used
together. END DATA must appear by itself on a single line, with no leading white space
and exactly one space between the words END and DATA, like this:

END DATA.

6.2 CLOSE FILE HANDLE

CLOSE FILE HANDLE handle name.
CLOSE FILE HANDLE disassociates the name of a file handle with a given file. The

only specification is the name of the handle to close. Afterward FILE HANDLE.
If the file handle name refers to a scratch file, then the storage associated with the scratch

file in memory or on disk will be freed. If the scratch file is in use, e.g. it has been specified
on a GET command whose execution has not completed, then freeing is delayed until it is
no longer in use.

The file named INLINE, which represents data entered between BEGIN DATA and END
DATA, cannot be closed. Attempts to close it with CLOSE FILE HANDLE have no effect.

CLOSE FILE HANDLE is a PSPP extension.

6.3 DATA LIST

Used to read text or binary data, DATA LIST is the most fundamental data-reading com-
mand. Even the more sophisticated input methods use DATA LIST commands as a building
block. Understanding DATA LIST is important to understanding how to use PSPP to read
your data files.

There are two major variants of DATA LIST, which are fixed format and free format.
In addition, free format has a minor variant, list format, which is discussed in terms of its
differences from vanilla free format.

Chapter 6: Data Input and Output 44

Each form of DATA LIST is described in detail below.

See Section 7.4 [GET DATA], page 60, for a command that offers a few enhancements
over DATA LIST and that may be substituted for DATA LIST in many situations.

6.3.1 DATA LIST FIXED

DATA LIST [FIXED]
{TABLE,NOTABLE}
[FILE=’file-name’]
[RECORDS=record count]
[END=end var]
[SKIP=record count]
/[line no] var spec. . .

where each var spec takes one of the forms
var list start-end [type spec]
var list (fortran spec)

DATA LIST FIXED is used to read data files that have values at fixed positions on each
line of single-line or multiline records. The keyword FIXED is optional.

The FILE subcommand must be used if input is to be taken from an external file. It may
be used to specify a file name as a string or a file handle (see Section 4.9 [File Handles],
page 23). If the FILE subcommand is not used, then input is assumed to be specified
within the command file using BEGIN DATA. . .END DATA (see Section 6.1 [BEGIN
DATA], page 43).

The optional RECORDS subcommand, which takes a single integer as an argument,
is used to specify the number of lines per record. If RECORDS is not specified, then the
number of lines per record is calculated from the list of variable specifications later in DATA
LIST.

The END subcommand is only useful in conjunction with INPUT PROGRAM. See
Section 6.7 [INPUT PROGRAM], page 50, for details.

The optional SKIP subcommand specifies a number of records to skip at the beginning
of an input file. It can be used to skip over a row that contains variable names, for example.

DATA LIST can optionally output a table describing how the data file will be read. The
TABLE subcommand enables this output, and NOTABLE disables it. The default is to
output the table.

The list of variables to be read from the data list must come last. Each line in the
data record is introduced by a slash (‘/’). Optionally, a line number may follow the slash.
Following, any number of variable specifications may be present.

Each variable specification consists of a list of variable names followed by a description of
their location on the input line. Sets of variables may be specified using the DATA LIST TO
convention (see Section 4.7.3 [Sets of Variables], page 13). There are two ways to specify
the location of the variable on the line: columnar style and FORTRAN style.

In columnar style, the starting column and ending column for the field are specified after
the variable name, separated by a dash (‘-’). For instance, the third through fifth columns
on a line would be specified ‘3-5’. By default, variables are considered to be in ‘F’ format

Chapter 6: Data Input and Output 45

(see Section 4.7.4 [Input and Output Formats], page 13). (This default can be changed; see
Section 13.17 [SET], page 108 for more information.)

In columnar style, to use a variable format other than the default, specify the format
type in parentheses after the column numbers. For instance, for alphanumeric ‘A’ format,
use ‘(A)’.

In addition, implied decimal places can be specified in parentheses after the column
numbers. As an example, suppose that a data file has a field in which the characters ‘1234’
should be interpreted as having the value 12.34. Then this field has two implied decimal
places, and the corresponding specification would be ‘(2)’. If a field that has implied
decimal places contains a decimal point, then the implied decimal places are not applied.

Changing the variable format and adding implied decimal places can be done together;
for instance, ‘(N,5)’.

When using columnar style, the input and output width of each variable is computed
from the field width. The field width must be evenly divisible into the number of variables
specified.

FORTRAN style is an altogether different approach to specifying field locations. With
this approach, a list of variable input format specifications, separated by commas, are
placed after the variable names inside parentheses. Each format specifier advances as many
characters into the input line as it uses.

Implied decimal places also exist in FORTRAN style. A format specification with d
decimal places also has d implied decimal places.

In addition to the standard format specifiers (see Section 4.7.4 [Input and Output For-
mats], page 13), FORTRAN style defines some extensions:

X Advance the current column on this line by one character position.

Tx Set the current column on this line to column x, with column numbers consid-
ered to begin with 1 at the left margin.

NEWRECx Skip forward x lines in the current record, resetting the active column to the
left margin.

Repeat count
Any format specifier may be preceded by a number. This causes the action of
that format specifier to be repeated the specified number of times.

(spec1, . . . , specN)
Group the given specifiers together. This is most useful when preceded by a
repeat count. Groups may be nested arbitrarily.

FORTRAN and columnar styles may be freely intermixed. Columnar style leaves the
active column immediately after the ending column specified. Record motion using NEWREC
in FORTRAN style also applies to later FORTRAN and columnar specifiers.

Examples

1.
DATA LIST TABLE /NAME 1-10 (A) INFO1 TO INFO3 12-17 (1).

Chapter 6: Data Input and Output 46

BEGIN DATA.
John Smith 102311
Bob Arnold 122015
Bill Yates 918 6
END DATA.

Defines the following variables:
• NAME, a 10-character-wide long string variable, in columns 1 through 10.
• INFO1, a numeric variable, in columns 12 through 13.
• INFO2, a numeric variable, in columns 14 through 15.
• INFO3, a numeric variable, in columns 16 through 17.

The BEGIN DATA/END DATA commands cause three cases to be defined:
Case NAME INFO1 INFO2 INFO3

1 John Smith 10 23 11
2 Bob Arnold 12 20 15
3 Bill Yates 9 18 6

The TABLE keyword causes PSPP to print out a table describing the four variables
defined.

2.
DAT LIS FIL="survey.dat"

/ID 1-5 NAME 7-36 (A) SURNAME 38-67 (A) MINITIAL 69 (A)
/Q01 TO Q50 7-56
/.

Defines the following variables:
• ID, a numeric variable, in columns 1-5 of the first record.
• NAME, a 30-character long string variable, in columns 7-36 of the first record.
• SURNAME, a 30-character long string variable, in columns 38-67 of the first record.
• MINITIAL, a 1-character short string variable, in column 69 of the first record.
• Fifty variables Q01, Q02, Q03, . . . , Q49, Q50, all numeric, Q01 in column 7, Q02 in

column 8, . . . , Q49 in column 55, Q50 in column 56, all in the second record.

Cases are separated by a blank record.
Data is read from file ‘survey.dat’ in the current directory.
This example shows keywords abbreviated to their first 3 letters.

6.3.2 DATA LIST FREE

DATA LIST FREE
[({TAB,’c’}, . . .)]
[{NOTABLE,TABLE}]
[FILE=’file-name’]
[SKIP=record cnt]
/var spec. . .

where each var spec takes one of the forms

Chapter 6: Data Input and Output 47

var list [(type spec)]
var list *

In free format, the input data is, by default, structured as a series of fields separated
by spaces, tabs, commas, or line breaks. Each field’s content may be unquoted, or it may
be quoted with a pairs of apostrophes (‘’’) or double quotes (‘"’). Unquoted white space
separates fields but is not part of any field. Any mix of spaces, tabs, and line breaks is
equivalent to a single space for the purpose of separating fields, but consecutive commas
will skip a field.

Alternatively, delimiters can be specified explicitly, as a parenthesized, comma-separated
list of single-character strings immediately following FREE. The word TAB may also be
used to specify a tab character as a delimiter. When delimiters are specified explicitly, only
the given characters, plus line breaks, separate fields. Furthermore, leading spaces at the
beginnings of fields are not trimmed, consecutive delimiters define empty fields, and no form
of quoting is allowed.

The NOTABLE and TABLE subcommands are as in DATA LIST FIXED above. NO-
TABLE is the default.

The FILE and SKIP subcommands are as in DATA LIST FIXED above.

The variables to be parsed are given as a single list of variable names. This list must
be introduced by a single slash (‘/’). The set of variable names may contain format spec-
ifications in parentheses (see Section 4.7.4 [Input and Output Formats], page 13). Format
specifications apply to all variables back to the previous parenthesized format specification.

In addition, an asterisk may be used to indicate that all variables preceding it are to
have input/output format ‘F8.0’.

Specified field widths are ignored on input, although all normal limits on field width
apply, but they are honored on output.

6.3.3 DATA LIST LIST

DATA LIST LIST
[({TAB,’c’}, . . .)]
[{NOTABLE,TABLE}]
[FILE=’file-name’]
[SKIP=record count]
/var spec. . .

where each var spec takes one of the forms
var list [(type spec)]
var list *

With one exception, DATA LIST LIST is syntactically and semantically equivalent to
DATA LIST FREE. The exception is that each input line is expected to correspond to
exactly one input record. If more or fewer fields are found on an input line than expected,
an appropriate diagnostic is issued.

6.4 END CASE

END CASE.

Chapter 6: Data Input and Output 48

END CASE is used only within INPUT PROGRAM to output the current case. See
Section 6.7 [INPUT PROGRAM], page 50, for details.

6.5 END FILE

END FILE.
END FILE is used only within INPUT PROGRAM to terminate the current input

program. See Section 6.7 [INPUT PROGRAM], page 50.

6.6 FILE HANDLE

For text files:
FILE HANDLE handle name

/NAME=’file-name’
[/MODE=CHARACTER]
/TABWIDTH=tab width

For binary files in native encoding with fixed-length records:
FILE HANDLE handle name

/NAME=’file-name’
/MODE=IMAGE
[/LRECL=rec len]

For binary files in native encoding with variable-length records:
FILE HANDLE handle name

/NAME=’file-name’
/MODE=BINARY
[/LRECL=rec len]

For binary files encoded in EBCDIC:
FILE HANDLE handle name

/NAME=’file-name’
/MODE=360
/RECFORM={FIXED,VARIABLE,SPANNED}
[/LRECL=rec len]

To explicitly declare a scratch handle:
FILE HANDLE handle name

/MODE=SCRATCH
Use FILE HANDLE to associate a file handle name with a file and its attributes, so that

later commands can refer to the file by its handle name. Names of text files can be specified
directly on commands that access files, so that FILE HANDLE is only needed when a file
is not an ordinary file containing lines of text. However, FILE HANDLE may be used even
for text files, and it may be easier to specify a file’s name once and later refer to it by an
abstract handle.

Specify the file handle name as the identifier immediately following the FILE HANDLE
command name. The identifier INLINE is reserved for representing data embedded in the

Chapter 6: Data Input and Output 49

syntax file (see Section 6.1 [BEGIN DATA], page 43) The file handle name must not already
have been used in a previous invocation of FILE HANDLE, unless it has been closed by an
intervening command (see Section 6.2 [CLOSE FILE HANDLE], page 43).

The effect and syntax of FILE HANDLE depends on the selected MODE:
• In CHARACTER mode, the default, the data file is read as a text file, according to

the local system’s conventions, and each text line is read as one record.
In CHARACTER mode only, tabs are expanded to spaces by input programs, except
by DATA LIST FREE with explicitly specified delimiters. Each tab is 4 characters wide
by default, but TABWIDTH (a PSPP extension) may be used to specify an alternate
width. Use a TABWIDTH of 0 to suppress tab expansion.

• In IMAGE mode, the data file is treated as a series of fixed-length binary records.
LRECL should be used to specify the record length in bytes, with a default of 1024.
On input, it is an error if an IMAGE file’s length is not a integer multiple of the record
length. On output, each record is padded with spaces or truncated, if necessary, to
make it exactly the correct length.

• In BINARY mode, the data file is treated as a series of variable-length binary records.
LRECL may be specified, but its value is ignored. The data for each record is both
preceded and followed by a 32-bit signed integer in little-endian byte order that specifies
the length of the record. (This redundancy permits records in these files to be efficiently
read in reverse order, although PSPP always reads them in forward order.) The length
does not include either integer.

• Mode 360 reads and writes files in formats first used for tapes in the 1960s on IBM
mainframe operating systems and still supported today by the modern successors of
those operating systems. For more information, see OS/400 Tape and Diskette Device
Programming, available on IBM’s website.
Alphanumeric data in mode 360 files are encoded in EBCDIC. PSPP translates
EBCDIC to or from the host’s native format as necessary on input or output, using
an ASCII/EBCDIC translation that is one-to-one, so that a “round trip” from ASCII
to EBCDIC back to ASCII, or vice versa, always yields exactly the original data.
The RECFORM subcommand is required in mode 360. The precise file format depends
on its setting:

F
FIXED This record format is equivalent to IMAGE mode, except for EBCDIC

translation.
IBM documentation calls this *F (fixed-length, deblocked) format.

V
VARIABLE

The file comprises a sequence of zero or more variable-length blocks. Each
block begins with a 4-byte block descriptor word (BDW). The first two
bytes of the BDW are an unsigned integer in big-endian byte order that
specifies the length of the block, including the BDW itself. The other two
bytes of the BDW are ignored on input and written as zeros on output.
Following the BDW, the remainder of each block is a sequence of one or
more variable-length records, each of which in turn begins with a 4-byte

Chapter 6: Data Input and Output 50

record descriptor word (RDW) that has the same format as the BDW.
Following the RDW, the remainder of each record is the record data.

The maximum length of a record in VARIABLE mode is 65,527 bytes:
65,535 bytes (the maximum value of a 16-bit unsigned integer), minus 4
bytes for the BDW, minus 4 bytes for the RDW.

In mode VARIABLE, LRECL specifies a maximum, not a fixed, record
length, in bytes. The default is 8,192.

IBM documentation calls this *VB (variable-length, blocked, unspanned)
format.

VS
SPANNED

The file format is like that of VARIABLE mode, except that logical records
may be split among multiple physical records (called segments) or blocks.
In SPANNED mode, the third byte of each RDW is called the segment con-
trol character (SCC). Odd SCC values cause the segment to be appended
to a record buffer maintained in memory; even values also append the
segment and then flush its contents to the input procedure. Canonically,
SCC value 0 designates a record not spanned among multiple segments,
and values 1 through 3 designate the first segment, the last segment, or
an intermediate segment, respectively, within a multi-segment record. The
record buffer is also flushed at end of file regardless of the final record’s
SCC.

The maximum length of a logical record in VARIABLE mode is limited
only by memory available to PSPP. Segments are limited to 65,527 bytes,
as in VARIABLE mode.

This format is similar to what IBM documentation call *VS (variable-
length, deblocked, spanned) format.

In mode 360, fields of type A that extend beyond the end of a record read from disk
are padded with spaces in the host’s native character set, which are then translated
from EBCDIC to the native character set. Thus, when the host’s native character set
is based on ASCII, these fields are effectively padded with character X’80’. This wart
is implemented for compatibility.

• SCRATCH mode is a PSPP extension that designates the file handle as a scratch file
handle. Its use is usually unnecessary because file handle names that begin with ‘#’
are assumed to refer to scratch files. see Section 4.9 [File Handles], page 23, for more
information.

The NAME subcommand specifies the name of the file associated with the handle. It is
required in all modes but SCRATCH mode, in which its use is forbidden.

6.7 INPUT PROGRAM

INPUT PROGRAM.
. . . input commands . . .
END INPUT PROGRAM.

Chapter 6: Data Input and Output 51

INPUT PROGRAM. . .END INPUT PROGRAM specifies a complex input program.
By placing data input commands within INPUT PROGRAM, PSPP programs can take
advantage of more complex file structures than available with only DATA LIST.

The first sort of extended input program is to simply put multiple DATA LIST commands
within the INPUT PROGRAM. This will cause all of the data files to be read in parallel.
Input will stop when end of file is reached on any of the data files.

Transformations, such as conditional and looping constructs, can also be included within
INPUT PROGRAM. These can be used to combine input from several data files in more
complex ways. However, input will still stop when end of file is reached on any of the data
files.

To prevent INPUT PROGRAM from terminating at the first end of file, use the END
subcommand on DATA LIST. This subcommand takes a variable name, which should be a
numeric scratch variable (see Section 4.7.5 [Scratch Variables], page 22). (It need not be a
scratch variable but otherwise the results can be surprising.) The value of this variable is
set to 0 when reading the data file, or 1 when end of file is encountered.

Two additional commands are useful in conjunction with INPUT PROGRAM. END
CASE is the first. Normally each loop through the INPUT PROGRAM structure produces
one case. END CASE controls exactly when cases are output. When END CASE is used,
looping from the end of INPUT PROGRAM to the beginning does not cause a case to be
output.

END FILE is the second. When the END subcommand is used on DATA LIST, there
is no way for the INPUT PROGRAM construct to stop looping, so an infinite loop results.
END FILE, when executed, stops the flow of input data and passes out of the INPUT
PROGRAM structure.

All this is very confusing. A few examples should help to clarify.
INPUT PROGRAM.

DATA LIST NOTABLE FILE=’a.data’/X 1-10.
DATA LIST NOTABLE FILE=’b.data’/Y 1-10.

END INPUT PROGRAM.
LIST.

The example above reads variable X from file ‘a.data’ and variable Y from file ‘b.data’.
If one file is shorter than the other then the extra data in the longer file is ignored.

INPUT PROGRAM.
NUMERIC #A #B.

DO IF NOT #A.
DATA LIST NOTABLE END=#A FILE=’a.data’/X 1-10.

END IF.
DO IF NOT #B.

DATA LIST NOTABLE END=#B FILE=’b.data’/Y 1-10.
END IF.
DO IF #A AND #B.

END FILE.
END IF.
END CASE.

Chapter 6: Data Input and Output 52

END INPUT PROGRAM.
LIST.

The above example reads variable X from ‘a.data’ and variable Y from ‘b.data’. If
one file is shorter than the other then the missing field is set to the system-missing value
alongside the present value for the remaining length of the longer file.

INPUT PROGRAM.
NUMERIC #A #B.

DO IF #A.
DATA LIST NOTABLE END=#B FILE=’b.data’/X 1-10.
DO IF #B.

END FILE.
ELSE.

END CASE.
END IF.

ELSE.
DATA LIST NOTABLE END=#A FILE=’a.data’/X 1-10.
DO IF NOT #A.

END CASE.
END IF.

END IF.
END INPUT PROGRAM.
LIST.

The above example reads data from file ‘a.data’, then from ‘b.data’, and concatenates
them into a single active file.

INPUT PROGRAM.
NUMERIC #EOF.

LOOP IF NOT #EOF.
DATA LIST NOTABLE END=#EOF FILE=’a.data’/X 1-10.
DO IF NOT #EOF.

END CASE.
END IF.

END LOOP.

COMPUTE #EOF = 0.
LOOP IF NOT #EOF.

DATA LIST NOTABLE END=#EOF FILE=’b.data’/X 1-10.
DO IF NOT #EOF.

END CASE.
END IF.

END LOOP.

END FILE.
END INPUT PROGRAM.
LIST.

Chapter 6: Data Input and Output 53

The above example does the same thing as the previous example, in a different way.

INPUT PROGRAM.
LOOP #I=1 TO 50.

COMPUTE X=UNIFORM(10).
END CASE.

END LOOP.
END FILE.

END INPUT PROGRAM.
LIST/FORMAT=NUMBERED.

The above example causes an active file to be created consisting of 50 random variates
between 0 and 10.

6.8 LIST

LIST
/VARIABLES=var list
/CASES=FROM start index TO end index BY incr index
/FORMAT={UNNUMBERED,NUMBERED} {WRAP,SINGLE}

{NOWEIGHT,WEIGHT}

The LIST procedure prints the values of specified variables to the listing file.

The VARIABLES subcommand specifies the variables whose values are to be printed.
Keyword VARIABLES is optional. If VARIABLES subcommand is not specified then all
variables in the active file are printed.

The CASES subcommand can be used to specify a subset of cases to be printed. Specify
FROM and the case number of the first case to print, TO and the case number of the last
case to print, and BY and the number of cases to advance between printing cases, or any
subset of those settings. If CASES is not specified then all cases are printed.

The FORMAT subcommand can be used to change the output format. NUMBERED
will print case numbers along with each case; UNNUMBERED, the default, causes the
case numbers to be omitted. The WRAP and SINGLE settings are currently not used.
WEIGHT will cause case weights to be printed along with variable values; NOWEIGHT,
the default, causes case weights to be omitted from the output.

Case numbers start from 1. They are counted after all transformations have been con-
sidered.

LIST attempts to fit all the values on a single line. If needed to make them fit, variable
names are displayed vertically. If values cannot fit on a single line, then a multi-line format
will be used.

LIST is a procedure. It causes the data to be read.

6.9 NEW FILE

NEW FILE.

NEW FILE command clears the current active file.

Chapter 6: Data Input and Output 54

6.10 PRINT

PRINT
OUTFILE=’file-name’
RECORDS=n lines
{NOTABLE,TABLE}
[/[line no] arg. . .]

arg takes one of the following forms:
’string’ [start-end]
var list start-end [type spec]
var list (fortran spec)
var list *

The PRINT transformation writes variable data to the listing file or an output file.
PRINT is executed when a procedure causes the data to be read. Follow PRINT by EXE-
CUTE to print variable data without invoking a procedure (see Section 13.10 [EXECUTE],
page 106).

All PRINT subcommands are optional. If no strings or variables are specified, PRINT
outputs a single blank line.

The OUTFILE subcommand specifies the file to receive the output. The file may be a
file name as a string or a file handle (see Section 4.9 [File Handles], page 23). If OUTFILE
is not present then output will be sent to PSPP’s output listing file. When OUTFILE is
present, a space is inserted at beginning of each output line, even lines that otherwise would
be blank.

The RECORDS subcommand specifies the number of lines to be output. The number
of lines may optionally be surrounded by parentheses.

TABLE will cause the PRINT command to output a table to the listing file that describes
what it will print to the output file. NOTABLE, the default, suppresses this output table.

Introduce the strings and variables to be printed with a slash (‘/’). Optionally, the slash
may be followed by a number indicating which output line will be specified. In the absence
of this line number, the next line number will be specified. Multiple lines may be specified
using multiple slashes with the intended output for a line following its respective slash.

Literal strings may be printed. Specify the string itself. Optionally the string may be
followed by a column number or range of column numbers, specifying the location on the
line for the string to be printed. Otherwise, the string will be printed at the current position
on the line.

Variables to be printed can be specified in the same ways as available for DATA LIST
FIXED (see Section 6.3.1 [DATA LIST FIXED], page 44). In addition, a variable list may
be followed by an asterisk (‘*’), which indicates that the variables should be printed in their
dictionary print formats, separated by spaces. A variable list followed by a slash or the end
of command will be interpreted the same way.

If a FORTRAN type specification is used to move backwards on the current line, then
text is written at that point on the line, the line will be truncated to that length, although
additional text being added will again extend the line to that length.

Chapter 6: Data Input and Output 55

6.11 PRINT EJECT

PRINT EJECT
OUTFILE=’file-name’
RECORDS=n lines
{NOTABLE,TABLE}
/[line no] arg. . .

arg takes one of the following forms:
’string’ [start-end]
var list start-end [type spec]
var list (fortran spec)
var list *

PRINT EJECT advances to the beginning of a new output page in the listing file or
output file. It can also output data in the same way as PRINT.

All PRINT EJECT subcommands are optional.
Without OUTFILE, PRINT EJECT ejects the current page in the listing file, then it

produces other output, if any is specified.
With OUTFILE, PRINT EJECT writes its output to the specified file. The first line of

output is written with ‘1’ inserted in the first column. Commonly, this is the only line of
output. If additional lines of output are specified, these additional lines are written with a
space inserted in the first column, as with PRINT.

See Section 6.10 [PRINT], page 54, for more information on syntax and usage.

6.12 PRINT SPACE

PRINT SPACE OUTFILE=’file-name’ n lines.
PRINT SPACE prints one or more blank lines to an output file.
The OUTFILE subcommand is optional. It may be used to direct output to a file

specified by file name as a string or file handle (see Section 4.9 [File Handles], page 23). If
OUTFILE is not specified then output will be directed to the listing file.

n lines is also optional. If present, it is an expression (see Chapter 5 [Expressions],
page 25) specifying the number of blank lines to be printed. The expression must evaluate
to a nonnegative value.

6.13 REREAD

REREAD FILE=handle COLUMN=column.
The REREAD transformation allows the previous input line in a data file already pro-

cessed by DATA LIST or another input command to be re-read for further processing.
The FILE subcommand, which is optional, is used to specify the file to have its line re-

read. The file must be specified as the name of a file handle (see Section 4.9 [File Handles],
page 23). If FILE is not specified then the last file specified on DATA LIST will be assumed
(last file specified lexically, not in terms of flow-of-control).

By default, the line re-read is re-read in its entirety. With the COLUMN subcommand,
a prefix of the line can be exempted from re-reading. Specify an expression (see Chapter 5

Chapter 6: Data Input and Output 56

[Expressions], page 25) evaluating to the first column that should be included in the re-read
line. Columns are numbered from 1 at the left margin.

Issuing REREAD multiple times will not back up in the data file. Instead, it will re-read
the same line multiple times.

6.14 REPEATING DATA

REPEATING DATA
/STARTS=start-end
/OCCURS=n occurs
/FILE=’file-name’
/LENGTH=length
/CONTINUED[=cont start-cont end]
/ID=id start-id end=id var
/{TABLE,NOTABLE}
/DATA=var spec. . .

where each var spec takes one of the forms
var list start-end [type spec]
var list (fortran spec)

REPEATING DATA parses groups of data repeating in a uniform format, possibly with
several groups on a single line. Each group of data corresponds with one case. REPEATING
DATA may only be used within an INPUT PROGRAM structure (see Section 6.7 [INPUT
PROGRAM], page 50). When used with DATA LIST, it can be used to parse groups of
cases that share a subset of variables but differ in their other data.

The STARTS subcommand is required. Specify a range of columns, using literal numbers
or numeric variable names. This range specifies the columns on the first line that are used
to contain groups of data. The ending column is optional. If it is not specified, then the
record width of the input file is used. For the inline file (see Section 6.1 [BEGIN DATA],
page 43) this is 80 columns; for a file with fixed record widths it is the record width; for
other files it is 1024 characters by default.

The OCCURS subcommand is required. It must be a number or the name of a numeric
variable. Its value is the number of groups present in the current record.

The DATA subcommand is required. It must be the last subcommand specified. It is
used to specify the data present within each repeating group. Column numbers are specified
relative to the beginning of a group at column 1. Data is specified in the same way as with
DATA LIST FIXED (see Section 6.3.1 [DATA LIST FIXED], page 44).

All other subcommands are optional.

FILE specifies the file to read, either a file name as a string or a file handle (see Section 4.9
[File Handles], page 23). If FILE is not present then the default is the last file handle used
on DATA LIST (lexically, not in terms of flow of control).

By default REPEATING DATA will output a table describing how it will parse the input
data. Specifying NOTABLE will disable this behavior; specifying TABLE will explicitly
enable it.

Chapter 6: Data Input and Output 57

The LENGTH subcommand specifies the length in characters of each group. If it is not
present then length is inferred from the DATA subcommand. LENGTH can be a number
or a variable name.

Normally all the data groups are expected to be present on a single line. Use the
CONTINUED command to indicate that data can be continued onto additional lines. If
data on continuation lines starts at the left margin and continues through the entire field
width, no column specifications are necessary on CONTINUED. Otherwise, specify the
possible range of columns in the same way as on STARTS.

When data groups are continued from line to line, it is easy for cases to get out of sync
through careless hand editing. The ID subcommand allows a case identifier to be present on
each line of repeating data groups. REPEATING DATA will check for the same identifier
on each line and report mismatches. Specify the range of columns that the identifier will
occupy, followed by an equals sign (‘=’) and the identifier variable name. The variable must
already have been declared with NUMERIC or another command.

REPEATING DATA should be the last command given within an INPUT PROGRAM.
It should not be enclosed within a LOOP structure (see Section 11.4 [LOOP], page 90).
Use DATA LIST before, not after, REPEATING DATA.

6.15 WRITE

WRITE
OUTFILE=’file-name’
RECORDS=n lines
{NOTABLE,TABLE}
/[line no] arg. . .

arg takes one of the following forms:
’string’ [start-end]
var list start-end [type spec]
var list (fortran spec)
var list *

WRITE writes text or binary data to an output file.
See Section 6.10 [PRINT], page 54, for more information on syntax and usage. PRINT

and WRITE differ in only a few ways:
• WRITE uses write formats by default, whereas PRINT uses print formats.
• PRINT inserts a space between variables unless a format is explicitly specified, but

WRITE never inserts space between variables in output.
• PRINT inserts a space at the beginning of each line that it writes to an output file

(and PRINT EJECT inserts ‘1’ at the beginning of each line that should begin a new
page), but WRITE does not.

• PRINT outputs the system-missing value according to its specified output format,
whereas WRITE outputs the system-missing value as a field filled with spaces. Binary
formats are an exception.

Chapter 7: System Files and Portable Files 58

7 System Files and Portable Files

The commands in this chapter read, write, and examine system files and portable files.

7.1 APPLY DICTIONARY

APPLY DICTIONARY FROM={’file-name’,file handle}.

APPLY DICTIONARY applies the variable labels, value labels, and missing values taken
from a file to corresponding variables in the active file. In some cases it also updates the
weighting variable.

Specify a system file, portable file, or scratch file with a file name string or as a file
handle (see Section 4.9 [File Handles], page 23). The dictionary in the file will be read, but
it will not replace the active file dictionary. The file’s data will not be read.

Only variables with names that exist in both the active file and the system file are
considered. Variables with the same name but different types (numeric, string) will cause
an error message. Otherwise, the system file variables’ attributes will replace those in their
matching active file variables, as described below.

If a system file variable has a variable label, then it will replace the active file variable’s
variable label. If the system file variable does not have a variable label, then the active file
variable’s variable label, if any, will be retained.

If the active file variable is numeric or short string, then value labels and missing values,
if any, will be copied to the active file variable. If the system file variable does not have value
labels or missing values, then those in the active file variable, if any, will not be disturbed.

Finally, weighting of the active file is updated (see Section 10.7 [WEIGHT], page 88).
If the active file has a weighting variable, and the system file does not, or if the weighting
variable in the system file does not exist in the active file, then the active file weighting
variable, if any, is retained. Otherwise, the weighting variable in the system file becomes
the active file weighting variable.

APPLY DICTIONARY takes effect immediately. It does not read the active file. The
system file is not modified.

7.2 EXPORT

EXPORT
/OUTFILE=’file-name’
/UNSELECTED={RETAIN,DELETE}
/DIGITS=n
/DROP=var list
/KEEP=var list
/RENAME=(src names=target names). . .
/TYPE={COMM,TAPE}
/MAP

The EXPORT procedure writes the active file dictionary and data to a specified portable
file or scratch file.

Chapter 7: System Files and Portable Files 59

By default, cases excluded with FILTER are written to the file. These can be excluded
by specifying DELETE on the UNSELECTED subcommand. Specifying RETAIN makes
the default explicit.

Portable files express real numbers in base 30. Integers are always expressed to the
maximum precision needed to make them exact. Non-integers are, by default, expressed
to the machine’s maximum natural precision (approximately 15 decimal digits on many
machines). If many numbers require this many digits, the portable file may significantly
increase in size. As an alternative, the DIGITS subcommand may be used to specify the
number of decimal digits of precision to write. DIGITS applies only to non-integers.

The OUTFILE subcommand, which is the only required subcommand, specifies the
portable file or scratch file to be written as a file name string or a file handle (see Section 4.9
[File Handles], page 23).

DROP, KEEP, and RENAME follow the same format as the SAVE procedure (see
Section 7.7 [SAVE], page 67).

The TYPE subcommand specifies the character set for use in the portable file. Its value
is currently not used.

The MAP subcommand is currently ignored.

EXPORT is a procedure. It causes the active file to be read.

7.3 GET

GET
/FILE={’file-name’,file handle}
/DROP=var list
/KEEP=var list
/RENAME=(src names=target names). . .

GET clears the current dictionary and active file and replaces them with the dictionary
and data from a specified file.

The FILE subcommand is the only required subcommand. Specify the system file,
portable file, or scratch file to be read as a string file name or a file handle (see Section 4.9
[File Handles], page 23).

By default, all the variables in a file are read. The DROP subcommand can be used to
specify a list of variables that are not to be read. By contrast, the KEEP subcommand can
be used to specify variable that are to be read, with all other variables not read.

Normally variables in a file retain the names that they were saved under. Use the RE-
NAME subcommand to change these names. Specify, within parentheses, a list of variable
names followed by an equals sign (‘=’) and the names that they should be renamed to.
Multiple parenthesized groups of variable names can be included on a single RENAME
subcommand. Variables’ names may be swapped using a RENAME subcommand of the
form ‘/RENAME=(A B=B A)’.

Alternate syntax for the RENAME subcommand allows the parentheses to be elimi-
nated. When this is done, only a single variable may be renamed at once. For instance,
‘/RENAME=A=B’. This alternate syntax is deprecated.

Chapter 7: System Files and Portable Files 60

DROP, KEEP, and RENAME are executed in left-to-right order. Each may be present
any number of times. GET never modifies a file on disk. Only the active file read from the
file is affected by these subcommands.

GET does not cause the data to be read, only the dictionary. The data is read later,
when a procedure is executed.

Use of GET to read a portable file or scratch file is a PSPP extension.

7.4 GET DATA

GET DATA
/TYPE={GNM,PSQL,TXT}
. . . additional subcommands depending on TYPE. . .

The GET DATA command is used to read files and other data sources created by other
applications. When this command is executed, the current dictionary and active file are
replaced with variables and data read from the specified source.

The TYPE subcommand is mandatory and must be the first subcommand specified. It
determines the type of the file or source to read. PSPP currently supports the following file
types:

GNM Spreadsheet files created by Gnumeric (http://gnumeric.org).

PSQL Relations from PostgreSQL databases (http://postgresql.org).

TXT Textual data files in columnar and delimited formats.

Each supported file type has additional subcommands, explained in separate sections
below.

7.4.1 Gnumeric Spreadsheet Files

GET DATA /TYPE=GNM
/FILE={’file-name’}
/SHEET={NAME ’sheet-name’, INDEX n}
/CELLRANGE={RANGE ’range’, FULL}
/READNAMES={ON, OFF}
/ASSUMEDVARWIDTH=n.

To use GET DATA to read a spreadsheet file created by Gnumeric
(http://gnumeric.org), specify TYPE=GNM to indicate the file’s format and
use FILE to indicate the Gnumeric file to be read. All other subcommands are optional.

The format of each variable is determined by the format of the spreadsheet cell con-
taining the first datum for the variable. If this cell is of string (text) format, then the
width of the variable is determined from the length of the string it contains, unless the
ASSUMEDVARWIDTH subcommand is given.

The FILE subcommand is mandatory. Specify the name of the file to be read.

The SHEET subcommand specifies the sheet within the spreadsheet file to read. There
are two forms of the SHEET subcommand. In the first form, ‘/SHEET=name sheet-name ’,
the string sheet-name is the name of the sheet to read. In the second form, ‘/SHEET=index
idx ’, idx is a integer which is the index of the sheet to read. The first sheet has the index

http://gnumeric.org
http://postgresql.org
http://gnumeric.org

Chapter 7: System Files and Portable Files 61

1. If the SHEET subcommand is omitted, then the command will read the first sheet in
the file.

The CELLRANGE subcommand specifies the range of cells within the sheet to read.
If the subcommand is given as ‘/CELLRANGE=FULL’, then the entire sheet is read. To read
only part of a sheet, use the form ‘/CELLRANGE=range ’top-left-cell:bottom-right-
cell’’. For example, the subcommand ‘/CELLRANGE=range ’C3:P19’’ reads columns C–P,
and rows 3–19 inclusive. If no CELLRANGE subcommand is given, then the entire sheet
is read.

If ‘/READNAMES=ON’ is specified, then the contents of cells of the first row are used as
the names of the variables in which to store the data from subsequent rows. If the READ-
NAMES command is omitted, or if ‘/READNAMES=OFF’ is used, then the variables receive
automatically assigned names.

The ASSUMEDVARWIDTH subcommand specifies the maximum width of string vari-
ables read from the file. If omitted, the default value is determined from the length of the
string in the first spreadsheet cell for each variable.

7.4.2 Postgres Database Queries

GET DATA /TYPE=PSQL
/CONNECT={connection info}
/SQL={query}
[/ASSUMEDVARWIDTH=n]
[/UNENCRYPTED]
[/BSIZE=n].

The PSQL type is used to import data from a postgres database server. The server may
be located locally or remotely. Variables are automatically created based on the table col-
umn names or the names specified in the SQL query. Postgres data types of high precision,
will loose precision when imported into PSPP. Not all the postgres data types are able to
be represented in PSPP. If a datum cannot be represented a warning will be issued and
that datum will be set to SYSMIS.

The CONNECT subcommand is mandatory. It is a string specify-
ing the parameters of the database server from which the data should
be fetched. The format of the string is given in the postgres manual
http://www.postgresql.org/docs/8.0/static/libpq.html#LIBPQ-CONNECT.

The SQL subcommand is mandatory. It must be a valid SQL string to retrieve data
from the database.

The ASSUMEDVARWIDTH subcommand specifies the maximum width of string vari-
ables read from the database. If omitted, the default value is determined from the length
of the string in the first value read for each variable.

The UNENCRYPTED subcommand allows data to be retrieved over an insecure con-
nection. If the connection is not encrypted, and the UNENCRYPTED subcommand is not
given, then an error will occur. Whether or not the connection is encrypted depends upon
the underlying psql library and the capabilities of the database server.

The BSIZE subcommand serves only to optimise the speed of data transfer. It specifies
an upper limit on number of cases to fetch from the database at once. The default value
is 4096. If your SQL statement fetches a large number of cases but only a small number of

http://www.postgresql.org/docs/8.0/static/libpq.html#LIBPQ-CONNECT

Chapter 7: System Files and Portable Files 62

variables, then the data transfer may be faster if you increase this value. Conversely, if the
number of variables is large, or if the machine on which PSPP is running has only a small
amount of memory, then a smaller value will be better.

The following syntax is an example:
GET DATA /TYPE=PSQL

/CONNECT=’host=example.com port=5432 dbname=product user=fred passwd=xxxx’
/SQL=’select * from manufacturer’.

7.4.3 Textual Data Files

GET DATA /TYPE=TXT
/FILE={’file-name’,file handle}
[/ARRANGEMENT={DELIMITED,FIXED}]
[/FIRSTCASE={first case}]
[/IMPORTCASE={ALL,FIRST max cases,PERCENT percent}]
. . . additional subcommands depending on ARRANGEMENT. . .

When TYPE=TXT is specified, GET DATA reads data in a delimited or fixed columnar
format, much like DATA LIST (see Section 6.3 [DATA LIST], page 43).

The FILE subcommand is mandatory. Specify the file to be read as a string file name
or (for textual data only) a file handle (see Section 4.9 [File Handles], page 23).

The ARRANGEMENT subcommand determines the file’s basic format. DELIMITED,
the default setting, specifies that fields in the input data are separated by spaces, tabs,
or other user-specified delimiters. FIXED specifies that fields in the input data appear at
particular fixed column positions within records of a case.

By default, cases are read from the input file starting from the first line. To skip lines
at the beginning of an input file, set FIRSTCASE to the number of the first line to read: 2
to skip the first line, 3 to skip the first two lines, and so on.

IMPORTCASE can be used to limit the number of cases read from the input file. With
the default setting, ALL, all cases in the file are read. Specify FIRST max cases to read at
most max cases cases from the file. Use PERCENT percent to read only percent percent,
approximately, of the cases contained in the file. (The percentage is approximate, because
there is no way to accurately count the number of cases in the file without reading the
entire file. The number of cases in some kinds of unusual files cannot be estimated; PSPP
will read all cases in such files.)

FIRSTCASE and IMPORTCASE may be used with delimited and fixed-format data.
The remaining subcommands, which apply only to one of the two file arrangements, are
described below.

7.4.3.1 Reading Delimited Data

GET DATA /TYPE=TXT
/FILE={’file-name’,file handle}
[/ARRANGEMENT={DELIMITED,FIXED}]
[/FIRSTCASE={first case}]
[/IMPORTCASE={ALL,FIRST max cases,PERCENT percent}]

/DELIMITERS="delimiters"

Chapter 7: System Files and Portable Files 63

[/QUALIFIER="quotes" [/ESCAPE]]
[/DELCASE={LINE,VARIABLES n variables}]
/VARIABLES=del var [del var]. . .

where each del var takes the form:
variable format

The GET DATA command with TYPE=TXT and ARRANGEMENT=DELIMITED
reads input data from text files in delimited format, where fields are separated by a set
of user-specified delimiters. Its capabilities are similar to those of DATA LIST FREE (see
Section 6.3.2 [DATA LIST FREE], page 46), with a few enhancements.

The required FILE subcommand and optional FIRSTCASE and IMPORTCASE sub-
commands are described above (see Section 7.4.3 [GET DATA /TYPE=TXT], page 62).

DELIMITERS, which is required, specifies the set of characters that may separate fields.
Each character in the string specified on DELIMITERS separates one field from the next.
The end of a line also separates fields, regardless of DELIMITERS. Two consecutive de-
limiters in the input yield an empty field, as does a delimiter at the end of a line. A space
character as a delimiter is an exception: consecutive spaces do not yield an empty field and
neither does any number of spaces at the end of a line.

To use a tab as a delimiter, specify ‘\t’ at the beginning of the DELIMITERS string.
To use a backslash as a delimiter, specify ‘\\’ as the first delimiter or, if a tab should also
be a delimiter, immediately following ‘\t’. To read a data file in which each field appears
on a separate line, specify the empty string for DELIMITERS.

The optional QUALIFIER subcommand names one or more characters that can be used
to quote values within fields in the input. A field that begins with one of the specified quote
characters ends at the next matching quote. Intervening delimiters become part of the field,
instead of terminating it. The ability to specify more than one quote character is a PSPP
extension.

By default, a character specified on QUALIFIER cannot itself be embedded within a
field that it quotes, because the quote character always terminates the quoted field. With
ESCAPE, however, a doubled quote character within a quoted field inserts a single instance
of the quote into the field. For example, if ‘’’ is specified on QUALIFIER, then without
ESCAPE ’a’’b’ specifies a pair of fields that contain ‘a’ and ‘b’, but with ESCAPE it
specifies a single field that contains ‘a’b’. ESCAPE is a PSPP extension.

The DELCASE subcommand controls how data may be broken across lines in the data
file. With LINE, the default setting, each line must contain all the data for exactly one
case. For additional flexibility, to allow a single case to be split among lines or multiple
cases to be contained on a single line, specify VARIABLES n variables, where n variables
is the number of variables per case.

The VARIABLES subcommand is required and must be the last subcommand. Spec-
ify the name of each variable and its input format (see Section 4.7.4 [Input and Output
Formats], page 13) in the order they should be read from the input file.

Examples

On a Unix-like system, the ‘/etc/passwd’ file has a format similar to this:
root:1nyeSP5gD$pDq/:0:0:,,,:/root:/bin/bash
blp:1BrP/pFg4$g7OG:1000:1000:Ben Pfaff,,,:/home/blp:/bin/bash

Chapter 7: System Files and Portable Files 64

john:1JBuq/Fioq$g4A:1001:1001:John Darrington,,,:/home/john:/bin/bash
jhs:1D3li4hPL$88X1:1002:1002:Jason Stover,,,:/home/jhs:/bin/csh

The following syntax reads a file in the format used by ‘/etc/passwd’:
GET DATA /TYPE=TXT /FILE=’/etc/passwd’ /DELIMITERS=’:’

/VARIABLES=username A20
password A40
uid F10
gid F10
gecos A40
home A40
shell A40.

Consider the following data on used cars:
model year mileage price type age
Civic 2002 29883 15900 Si 2
Civic 2003 13415 15900 EX 1
Civic 1992 107000 3800 n/a 12
Accord 2002 26613 17900 EX 1

The following syntax can be used to read the used car data:
GET DATA /TYPE=TXT /FILE=’cars.data’ /DELIMITERS=’ ’ /FIRSTCASE=2

/VARIABLES=model A8
year F4
mileage F6
price F5
type A4
age F2.

Consider the following information on animals in a pet store:
’Pet’’s Name’, "Age", "Color", "Date Received", "Price", "Height", "Type"
, (Years), , , (Dollars), ,
"Rover", 4.5, Brown, "12 Feb 2004", 80, ’1’’4"’, "Dog"
"Charlie", , Gold, "5 Apr 2007", 12.3, "3""", "Fish"
"Molly", 2, Black, "12 Dec 2006", 25, ’5"’, "Cat"
"Gilly", , White, "10 Apr 2007", 10, "3""", "Guinea Pig"

The following syntax can be used to read the pet store data:
GET DATA /TYPE=TXT /FILE=’pets.data’ /DELIMITERS=’, ’ /QUALIFIER=’’’"’ /ESCAPE

/FIRSTCASE=3
/VARIABLES=name A10

age F3.1
color A5
received EDATE10
price F5.2
height a5
type a10.

7.4.3.2 Reading Fixed Columnar Data

GET DATA /TYPE=TXT

Chapter 7: System Files and Portable Files 65

/FILE={’file-name’,file handle}
[/ARRANGEMENT={DELIMITED,FIXED}]
[/FIRSTCASE={first case}]
[/IMPORTCASE={ALL,FIRST max cases,PERCENT percent}]

[/FIXCASE=n]
/VARIABLES fixed var [fixed var]. . .

[/rec# fixed var [fixed var]. . .]. . .
where each fixed var takes the form:

variable start-end format
The GET DATA command with TYPE=TXT and ARRANGEMENT=FIXED reads

input data from text files in fixed format, where each field is located in particular fixed
column positions within records of a case. Its capabilities are similar to those of DATA
LIST FIXED (see Section 6.3.1 [DATA LIST FIXED], page 44), with a few enhancements.

The required FILE subcommand and optional FIRSTCASE and IMPORTCASE sub-
commands are described above (see Section 7.4.3 [GET DATA /TYPE=TXT], page 62).

The optional FIXCASE subcommand may be used to specify the positive integer number
of input lines that make up each case. The default value is 1.

The VARIABLES subcommand, which is required, specifies the positions at which each
variable can be found. For each variable, specify its name, followed by its start and end
column separated by ‘-’ (e.g. ‘0-9’), followed by the input format type (e.g. ‘F’). For this
command, columns are numbered starting from 0 at the left column. Introduce the variables
in the second and later lines of a case by a slash followed by the number of the line within
the case, e.g. ‘/2’ for the second line.

Examples

Consider the following data on used cars:
model year mileage price type age
Civic 2002 29883 15900 Si 2
Civic 2003 13415 15900 EX 1
Civic 1992 107000 3800 n/a 12
Accord 2002 26613 17900 EX 1

The following syntax can be used to read the used car data:
GET DATA /TYPE=TXT /FILE=’cars.data’ /ARRANGEMENT=FIXED /FIRSTCASE=2

/VARIABLES=model 0-7 A
year 8-15 F
mileage 16-23 F
price 24-31 F
type 32-40 A
age 40-47 F.

7.5 IMPORT

IMPORT
/FILE=’file-name’
/TYPE={COMM,TAPE}

Chapter 7: System Files and Portable Files 66

/DROP=var list
/KEEP=var list
/RENAME=(src names=target names). . .

The IMPORT transformation clears the active file dictionary and data and replaces them
with a dictionary and data from a system, portable file, or scratch file.

The FILE subcommand, which is the only required subcommand, specifies the portable
file to be read as a file name string or a file handle (see Section 4.9 [File Handles], page 23).

The TYPE subcommand is currently not used.

DROP, KEEP, and RENAME follow the syntax used by GET (see Section 7.3 [GET],
page 59).

IMPORT does not cause the data to be read, only the dictionary. The data is read later,
when a procedure is executed.

Use of IMPORT to read a system file or scratch file is a PSPP extension.

7.6 MATCH FILES

MATCH FILES
/{FILE,TABLE}={*,’file-name’}
/RENAME=(src names=target names). . .
/IN=var name

/BY=var list
/DROP=var list
/KEEP=var list
/FIRST=var name
/LAST=var name
/MAP

MATCH FILES merges one or more system, portable, or scratch files, optionally in-
cluding the active file. Cases with the same values for BY variables are combined into a
single case. Cases with different values are output in order. Thus, multiple sorted files are
combined into a single sorted file based on the value of the BY variables. The results of the
merge become the new active file.

Specify FILE with a system, portable, or scratch file as a file name string or file handle
(see Section 4.9 [File Handles], page 23), or with an asterisk (‘*’) to indicate the current
active file. The files specified on FILE are merged together based on the BY variables, or
combined case-by-case if BY is not specified.

Specify TABLE with a file to use it as a table lookup file. Cases in table lookup files are
not used up after they’ve been used once. This means that data in table lookup files can
correspond to any number of cases in FILE files. Table lookup files correspond to lookup
tables in traditional relational database systems. If a table lookup file contains more than
one case with a given set of BY variables, only the first case is used.

Any number of FILE and TABLE subcommands may be specified. Ordinarily, at least
two FILE subcommands, or one FILE and at least one TABLE, should be specified. Each
instance of FILE or TABLE can be followed by any sequence of RENAME subcommands.

Chapter 7: System Files and Portable Files 67

These have the same form and meaning as the corresponding subcommands of GET (see
Section 7.3 [GET], page 59), but apply only to variables in the given file.

Each FILE or TABLE may optionally be followed by an IN subcommand, which creates
a numeric variable with the specified name and format F1.0. The IN variable takes value
1 in a case if the given file contributed a row to the merged file, 0 otherwise. The DROP,
KEEP, and RENAME subcommands do not affect IN variables.

When more than one FILE or TABLE contains a variable with a given name, those
variables must all have the same type (numeric or string) and, for string variables, the same
width. This rules applies to variable names after renaming with RENAME; thus, RENAME
can be used to resolve conflicts.

FILE and TABLE must be specified at the beginning of the command, with any RE-
NAME or IN specifications immediately after the corresponding FILE or TABLE. These
subcommands are followed by BY, DROP, KEEP, FIRST, LAST, and MAP.

The BY subcommand specifies a list of variables that are used to match cases from each
of the files. When TABLE or IN is used, BY is required; otherwise, it is optional. When
BY is specified, all the files named on FILE and TABLE subcommands must be sorted in
ascending order of the BY variables. Variables belonging to files that are not present for the
current case are set to the system-missing value for numeric variables or spaces for string
variables.

The DROP and KEEP subcommands allow variables to be dropped from or reordered
within the new active file. These subcommands have the same form and meaning as the
corresponding subcommands of GET (see Section 7.3 [GET], page 59). They apply to the
new active file as a whole, not to individual input files. The variable names specified on
DROP and KEEP are those after any renaming with RENAME.

The optional FIRST and LAST subcommands name variables that MATCH FILES adds
to the active file. The new variables are numeric with print and write format F1.0. The
value of the FIRST variable is 1 in the first case with a given set of values for the BY
variables, and 0 in other cases. Similarly, the LAST variable is 1 in the last case with a
given of BY values, and 0 in other cases.

MATCH FILES may not be specified following TEMPORARY (see Section 10.6 [TEM-
PORARY], page 87) if the active file is used as an input source.

Use of portable or scratch files on MATCH FILES is a PSPP extension.

7.7 SAVE

SAVE
/OUTFILE={’file-name’,file handle}
/UNSELECTED={RETAIN,DELETE}
/{COMPRESSED,UNCOMPRESSED}
/PERMISSIONS={WRITEABLE,READONLY}
/DROP=var list
/KEEP=var list
/VERSION=version
/RENAME=(src names=target names). . .
/NAMES

Chapter 7: System Files and Portable Files 68

/MAP

The SAVE procedure causes the dictionary and data in the active file to be written to a
system file or scratch file.

OUTFILE is the only required subcommand. Specify the system file or scratch file to
be written as a string file name or a file handle (see Section 4.9 [File Handles], page 23).

By default, cases excluded with FILTER are written to the system file. These can be
excluded by specifying DELETE on the UNSELECTED subcommand. Specifying RETAIN
makes the default explicit.

The COMPRESS and UNCOMPRESS subcommand determine whether the saved sys-
tem file is compressed. By default, system files are compressed. This default can be changed
with the SET command (see Section 13.17 [SET], page 108).

The PERMISSIONS subcommand specifies permissions for the new system file. WRITE-
ABLE, the default, creates the file with read and write permission. READONLY creates
the file for read-only access.

By default, all the variables in the active file dictionary are written to the system file.
The DROP subcommand can be used to specify a list of variables not to be written. In
contrast, KEEP specifies variables to be written, with all variables not specified not written.

Normally variables are saved to a system file under the same names they have in the
active file. Use the RENAME subcommand to change these names. Specify, within paren-
theses, a list of variable names followed by an equals sign (‘=’) and the names that they
should be renamed to. Multiple parenthesized groups of variable names can be included
on a single RENAME subcommand. Variables’ names may be swapped using a RENAME
subcommand of the form ‘/RENAME=(A B=B A)’.

Alternate syntax for the RENAME subcommand allows the parentheses to be elimi-
nated. When this is done, only a single variable may be renamed at once. For instance,
‘/RENAME=A=B’. This alternate syntax is deprecated.

DROP, KEEP, and RENAME are performed in left-to-right order. They each may be
present any number of times. SAVE never modifies the active file. DROP, KEEP, and
RENAME only affect the system file written to disk.

The VERSION subcommand specifies the version of the file format. Valid versions are
2 and 3. The default version is 3. In version 2 system files, variable names longer than 8
bytes will be truncated. The two versions are otherwise identical.

The NAMES and MAP subcommands are currently ignored.

SAVE causes the data to be read. It is a procedure.

7.8 SYSFILE INFO

SYSFILE INFO FILE=’file-name’.

SYSFILE INFO reads the dictionary in a system file and displays the information in its
dictionary.

Specify a file name or file handle. SYSFILE INFO reads that file as a system file and
displays information on its dictionary.

SYSFILE INFO does not affect the current active file.

Chapter 7: System Files and Portable Files 69

7.9 XEXPORT

XEXPORT
/OUTFILE=’file-name’
/DIGITS=n
/DROP=var list
/KEEP=var list
/RENAME=(src names=target names). . .
/TYPE={COMM,TAPE}
/MAP

The EXPORT transformation writes the active file dictionary and data to a specified
portable file.

This transformation is a PSPP extension.
It is similar to the EXPORT procedure, with two differences:
• XEXPORT is a transformation, not a procedure. It is executed when the data is read

by a procedure or procedure-like command.
• XEXPORT does not support the UNSELECTED subcommand.

See Section 7.2 [EXPORT], page 58, for more information.

7.10 XSAVE

XSAVE
/OUTFILE=’file-name’
/{COMPRESSED,UNCOMPRESSED}
/PERMISSIONS={WRITEABLE,READONLY}
/DROP=var list
/KEEP=var list
/VERSION=version
/RENAME=(src names=target names). . .
/NAMES
/MAP

The XSAVE transformation writes the active file dictionary and data to a system file or
scratch file. It is similar to the SAVE procedure, with two differences:
• XSAVE is a transformation, not a procedure. It is executed when the data is read by

a procedure or procedure-like command.
• XSAVE does not support the UNSELECTED subcommand.

See Section 7.7 [SAVE], page 67, for more information.

Chapter 8: Manipulating variables 70

8 Manipulating variables

The variables in the active file dictionary are important. There are several utility functions
for examining and adjusting them.

8.1 ADD VALUE LABELS

ADD VALUE LABELS
/var list value ’label’ [value ’label’]. . .

ADD VALUE LABELS has the same syntax and purpose as VALUE LABELS (see
Section 8.12 [VALUE LABELS], page 74), but it does not clear value labels from the
variables before adding the ones specified.

8.2 DELETE VARIABLES

DELETE VARIABLES var list.
DELETE VARIABLES deletes the specified variables from the dictionary. It may not be

used to delete all variables from the dictionary; use NEW FILE to do that (see Section 6.9
[NEW FILE], page 53).

DELETE VARIABLES should not used after defining transformations and before exe-
cuting a procedure. If it is used in such a context, it causes the data to be read. If it is
used while TEMPORARY is in effect, it causes the temporary transformations to become
permanent.

8.3 DISPLAY

DISPLAY {NAMES,INDEX,LABELS,VARIABLES,DICTIONARY,SCRATCH}
[SORTED] [var list]

DISPLAY displays requested information on variables. Variables can optionally be sorted
alphabetically. The entire dictionary or just specified variables can be described.

One of the following keywords can be present:

NAMES The variables’ names are displayed.

INDEX The variables’ names are displayed along with a value describing their position
within the active file dictionary.

LABELS Variable names, positions, and variable labels are displayed.

VARIABLES
Variable names, positions, print and write formats, and missing values are dis-
played.

DICTIONARY
Variable names, positions, print and write formats, missing values, variable
labels, and value labels are displayed.

SCRATCH
Varible names are displayed, for scratch variables only (see Section 4.7.5
[Scratch Variables], page 22).

Chapter 8: Manipulating variables 71

If SORTED is specified, then the variables are displayed in ascending order based on
their names; otherwise, they are displayed in the order that they occur in the active file
dictionary.

8.4 DISPLAY VECTORS

DISPLAY VECTORS.
DISPLAY VECTORS lists all the currently declared vectors.

8.5 FORMATS

FORMATS var list (fmt spec).
FORMATS set both print and write formats for the specified numeric variables to the

specified format specification. See Section 4.7.4 [Input and Output Formats], page 13.
Specify a list of variables followed by a format specification in parentheses. The print

and write formats of the specified variables will be changed.
Additional lists of variables and formats may be included if they are delimited by a slash

(‘/’).
FORMATS takes effect immediately. It is not affected by conditional and looping struc-

tures such as DO IF or LOOP.

8.6 LEAVE

LEAVE var list.
LEAVE prevents the specified variables from being reinitialized whenever a new case is

processed.
Normally, when a data file is processed, every variable in the active file is initialized

to the system-missing value or spaces at the beginning of processing for each case. When
a variable has been specified on LEAVE, this is not the case. Instead, that variable is
initialized to 0 (not system-missing) or spaces for the first case. After that, it retains its
value between cases.

This becomes useful for counters. For instance, in the example below the variable SUM
maintains a running total of the values in the ITEM variable.

DATA LIST /ITEM 1-3.
COMPUTE SUM=SUM+ITEM.
PRINT /ITEM SUM.
LEAVE SUM
BEGIN DATA.
123
404
555
999
END DATA.

Partial output from this example:
123 123.00
404 527.00

Chapter 8: Manipulating variables 72

555 1082.00
999 2081.00

It is best to use LEAVE command immediately before invoking a procedure command,
because the left status of variables is reset by certain transformations—for instance, COM-
PUTE and IF. Left status is also reset by all procedure invocations.

8.7 MISSING VALUES

MISSING VALUES var list (missing values).

missing values takes one of the following forms:
num1
num1, num2
num1, num2, num3
num1 THRU num2
num1 THRU num2, num3
string1
string1, string2
string1, string2, string3

As part of a range, LO or LOWEST may take the place of num1;
HI or HIGHEST may take the place of num2.

MISSING VALUES sets user-missing values for numeric and short string variables. Long
string variables may not have missing values.

Specify a list of variables, followed by a list of their user-missing values in parentheses.
Up to three discrete values may be given, or, for numeric variables only, a range of values
optionally accompanied by a single discrete value. Ranges may be open-ended on one end,
indicated through the use of the keyword LO or LOWEST or HI or HIGHEST.

The MISSING VALUES command takes effect immediately. It is not affected by condi-
tional and looping constructs such as DO IF or LOOP.

8.8 MODIFY VARS

MODIFY VARS
/REORDER={FORWARD,BACKWARD} {POSITIONAL,ALPHA} (var list). . .

/RENAME=(old names=new names). . .
/{DROP,KEEP}=var list
/MAP

MODIFY VARS reorders, renames, and deletes variables in the active file.
At least one subcommand must be specified, and no subcommand may be specified more

than once. DROP and KEEP may not both be specified.
The REORDER subcommand changes the order of variables in the active file. Specify

one or more lists of variable names in parentheses. By default, each list of variables is
rearranged into the specified order. To put the variables into the reverse of the specified
order, put keyword BACKWARD before the parentheses. To put them into alphabetical
order in the dictionary, specify keyword ALPHA before the parentheses. BACKWARD and
ALPHA may also be combined.

Chapter 8: Manipulating variables 73

To rename variables in the active file, specify RENAME, an equals sign (‘=’), and lists
of the old variable names and new variable names separated by another equals sign within
parentheses. There must be the same number of old and new variable names. Each old
variable is renamed to the corresponding new variable name. Multiple parenthesized groups
of variables may be specified.

The DROP subcommand deletes a specified list of variables from the active file.

The KEEP subcommand keeps the specified list of variables in the active file. Any
unlisted variables are deleted from the active file.

MAP is currently ignored.

If either DROP or KEEP is specified, the data is read; otherwise it is not.

MODIFY VARS may not be specified following TEMPORARY (see Section 10.6 [TEM-
PORARY], page 87).

8.9 NUMERIC

NUMERIC /var list [(fmt spec)].

NUMERIC explicitly declares new numeric variables, optionally setting their output
formats.

Specify a slash (‘/’), followed by the names of the new numeric variables. If you wish to
set their output formats, follow their names by an output format specification in parentheses
(see Section 4.7.4 [Input and Output Formats], page 13); otherwise, the default is F8.2.

Variables created with NUMERIC are initialized to the system-missing value.

8.10 PRINT FORMATS

PRINT FORMATS var list (fmt spec).

PRINT FORMATS sets the print formats for the specified numeric variables to the
specified format specification.

Its syntax is identical to that of FORMATS (see Section 8.5 [FORMATS], page 71), but
PRINT FORMATS sets only print formats, not write formats.

8.11 RENAME VARIABLES

RENAME VARIABLES (old names=new names). . . .

RENAME VARIABLES changes the names of variables in the active file. Specify lists
of the old variable names and new variable names, separated by an equals sign (‘=’), within
parentheses. There must be the same number of old and new variable names. Each old
variable is renamed to the corresponding new variable name. Multiple parenthesized groups
of variables may be specified.

RENAME VARIABLES takes effect immediately. It does not cause the data to be read.

RENAME VARIABLES may not be specified following TEMPORARY (see Section 10.6
[TEMPORARY], page 87).

Chapter 8: Manipulating variables 74

8.12 VALUE LABELS

VALUE LABELS
/var list value ’label’ [value ’label’]. . .

VALUE LABELS allows values of numeric and short string variables to be associated
with labels. In this way, a short value can stand for a long value.

To set up value labels for a set of variables, specify the variable names after a slash (‘/’),
followed by a list of values and their associated labels, separated by spaces. Long string
variables may not be specified.

Before VALUE LABELS is executed, any existing value labels are cleared from the
variables specified. Use ADD VALUE LABELS (see Section 8.1 [ADD VALUE LABELS],
page 70) to add value labels without clearing those already present.

8.13 STRING

STRING /var list (fmt spec).

STRING creates new string variables for use in transformations.

Specify a slash (‘/’), followed by the names of the string variables to create and the
desired output format specification in parentheses (see Section 4.7.4 [Input and Output
Formats], page 13). Variable widths are implicitly derived from the specified output formats.

Created variables are initialized to spaces.

8.14 VARIABLE LABELS

VARIABLE LABELS
var list ’var label’
[/var list ’var label’]
.
.
.
[/var list ’var label’]

VARIABLE LABELS associates explanatory names with variables. This name, called a
variable label, is displayed by statistical procedures.

To assign a variable label to a group of variables, specify a list of variable names and
the variable label as a string. To assign different labels to different variables in the same
command, precede the subsequent variable list with a slash (‘/’).

8.15 VARIABLE ALIGNMENT

VARIABLE ALIGNMENT
var list (LEFT | RIGHT | CENTER)
[/var list (LEFT | RIGHT | CENTER)]
.
.
.
[/var list (LEFT | RIGHT | CENTER)]

Chapter 8: Manipulating variables 75

VARIABLE ALIGNMENT sets the alignment of variables for display editing purposes.
This only has effect for third party software. It does not affect the display of variables in
the PSPP output.

8.16 VARIABLE WIDTH

VARIABLE WIDTH
var list (width)
[/var list (width)]
.
.
.
[/var list (width)]

VARIABLE WIDTH sets the column width of variables for display editing purposes.
This only affects third party software. It does not affect the display of variables in the
PSPP output.

8.17 VARIABLE LEVEL

VARIABLE LEVEL
var list (SCALE | NOMINAL | ORDINAL)
[/var list (SCALE | NOMINAL | ORDINAL)]
.
.
.
[/var list (SCALE | NOMINAL | ORDINAL)]

VARIABLE LEVEL sets the measurement level of variables. Currently, this has no
effect except for certain third party software.

8.18 VECTOR

Two possible syntaxes:
VECTOR vec name=var list.
VECTOR vec name list(count [format]).

VECTOR allows a group of variables to be accessed as if they were consecutive members
of an array with a vector(index) notation.

To make a vector out of a set of existing variables, specify a name for the vector followed
by an equals sign (‘=’) and the variables to put in the vector. All the variables in the vector
must be the same type. String variables in a vector must all have the same width.

To make a vector and create variables at the same time, specify one or more vector
names followed by a count in parentheses. This will cause variables named vec1 through
veccount to be created as numeric variables. By default, the new variables have print and
write format F8.2, but an alternate format may be specified inside the parentheses before or
after the count and separated from it by white space or a comma. Variable names including
numeric suffixes may not exceed 64 characters in length, and none of the variables may exist
prior to VECTOR.

Chapter 8: Manipulating variables 76

Vectors created with VECTOR disappear after any procedure or procedure-like com-
mand is executed. The variables contained in the vectors remain, unless they are scratch
variables (see Section 4.7.5 [Scratch Variables], page 22).

Variables within a vector may be referenced in expressions using vector(index) syntax.

8.19 WRITE FORMATS

WRITE FORMATS var list (fmt spec).
WRITE FORMATS sets the write formats for the specified numeric variables to the

specified format specification. Its syntax is identical to that of FORMATS (see Section 8.5
[FORMATS], page 71), but WRITE FORMATS sets only write formats, not print formats.

Chapter 9: Data transformations 77

9 Data transformations

The PSPP procedures examined in this chapter manipulate data and prepare the active file
for later analyses. They do not produce output, as a rule.

9.1 AGGREGATE

AGGREGATE
OUTFILE={*,’file-name’,file handle}
/PRESORTED
/DOCUMENT
/MISSING=COLUMNWISE
/BREAK=var list
/dest var[’label’]. . .=agr func(src vars, args. . .). . .

AGGREGATE summarizes groups of cases into single cases. Cases are divided into
groups that have the same values for one or more variables called break variables. Several
functions are available for summarizing case contents.

The OUTFILE subcommand is required and must appear first. Specify a system file,
portable file, or scratch file by file name or file handle (see Section 4.9 [File Handles],
page 23). The aggregated cases are written to this file. If ‘*’ is specified, then the aggregated
cases replace the active file. Use of OUTFILE to write a portable file or scratch file is a
PSPP extension.

By default, the active file will be sorted based on the break variables before aggregation
takes place. If the active file is already sorted or otherwise grouped in terms of the break
variables, specify PRESORTED to save time.

Specify DOCUMENT to copy the documents from the active file into the aggregate file
(see Section 13.4 [DOCUMENT], page 105). Otherwise, the aggregate file will not contain
any documents, even if the aggregate file replaces the active file.

Normally, only a single case (for SD and SD., two cases) need be non-missing in each
group for the aggregate variable to be non-missing. Specifying /MISSING=COLUMNWISE
inverts this behavior, so that the aggregate variable becomes missing if any aggregated value
is missing.

If PRESORTED, DOCUMENT, or MISSING are specified, they must appear between
OUTFILE and BREAK.

At least one break variable must be specified on BREAK, a required subcommand. The
values of these variables are used to divide the active file into groups to be summarized. In
addition, at least one dest var must be specified.

One or more sets of aggregation variables must be specified. Each set comprises a list
of aggregation variables, an equals sign (‘=’), the name of an aggregation function (see the
list below), and a list of source variables in parentheses. Some aggregation functions expect
additional arguments following the source variable names.

Aggregation variables typically are created with no variable label, value labels, or missing
values. Their default print and write formats depend on the aggregation function used, with
details given in the table below. A variable label for an aggregation variable may be specified
just after the variable’s name in the aggregation variable list.

Chapter 9: Data transformations 78

Each set must have exactly as many source variables as aggregation variables. Each
aggregation variable receives the results of applying the specified aggregation function to
the corresponding source variable. The MEAN, SD, and SUM aggregation functions may
only be applied to numeric variables. All the rest may be applied to numeric and short and
long string variables.

The available aggregation functions are as follows:

FGT(var name, value)
Fraction of values greater than the specified constant. The default format is
F5.3.

FIN(var name, low, high)
Fraction of values within the specified inclusive range of constants. The default
format is F5.3.

FLT(var name, value)
Fraction of values less than the specified constant. The default format is F5.3.

FIRST(var name)
First non-missing value in break group. The aggregation variable receives the
complete dictionary information from the source variable. The sort performed
by AGGREGATE (and by SORT CASES) is stable, so that the first case with
particular values for the break variables before sorting will also be the first case
in that break group after sorting.

FOUT(var name, low, high)
Fraction of values strictly outside the specified range of constants. The default
format is F5.3.

LAST(var name)
Last non-missing value in break group. The aggregation variable receives the
complete dictionary information from the source variable. The sort performed
by AGGREGATE (and by SORT CASES) is stable, so that the last case with
particular values for the break variables before sorting will also be the last case
in that break group after sorting.

MAX(var name)
Maximum value. The aggregation variable receives the complete dictionary
information from the source variable.

MEAN(var name)
Arithmetic mean. Limited to numeric values. The default format is F8.2.

MIN(var name)
Minimum value. The aggregation variable receives the complete dictionary
information from the source variable.

N(var name)
Number of non-missing values. The default format is F7.0 if weighting is not
enabled, F8.2 if it is (see Section 10.7 [WEIGHT], page 88).

N Number of cases aggregated to form this group. The default format is F7.0 if
weighting is not enabled, F8.2 if it is (see Section 10.7 [WEIGHT], page 88).

Chapter 9: Data transformations 79

NMISS(var name)
Number of missing values. The default format is F7.0 if weighting is not enabled,
F8.2 if it is (see Section 10.7 [WEIGHT], page 88).

NU(var name)
Number of non-missing values. Each case is considered to have a weight of
1, regardless of the current weighting variable (see Section 10.7 [WEIGHT],
page 88). The default format is F7.0.

NU Number of cases aggregated to form this group. Each case is considered to have
a weight of 1, regardless of the current weighting variable. The default format
is F7.0.

NUMISS(var name)
Number of missing values. Each case is considered to have a weight of 1,
regardless of the current weighting variable. The default format is F7.0.

PGT(var name, value)
Percentage between 0 and 100 of values greater than the specified constant.
The default format is F5.1.

PIN(var name, low, high)
Percentage of values within the specified inclusive range of constants. The
default format is F5.1.

PLT(var name, value)
Percentage of values less than the specified constant. The default format is
F5.1.

POUT(var name, low, high)
Percentage of values strictly outside the specified range of constants. The de-
fault format is F5.1.

SD(var name)
Standard deviation of the mean. Limited to numeric values. The default format
is F8.2.

SUM(var name)
Sum. Limited to numeric values. The default format is F8.2.

Aggregation functions compare string values in terms of internal character codes. On
most modern computers, this is a form of ASCII.

The aggregation functions listed above exclude all user-missing values from calculations.
To include user-missing values, insert a period (‘.’) at the end of the function name. (e.g.
‘SUM.’). (Be aware that specifying such a function as the last token on a line will cause the
period to be interpreted as the end of the command.)

AGGREGATE both ignores and cancels the current SPLIT FILE settings (see
Section 10.5 [SPLIT FILE], page 86).

Chapter 9: Data transformations 80

9.2 AUTORECODE

AUTORECODE VARIABLES=src vars INTO dest vars
/DESCENDING
/PRINT

The AUTORECODE procedure considers the n values that a variable takes on and maps
them onto values 1. . .n on a new numeric variable.

Subcommand VARIABLES is the only required subcommand and must come first. Spec-
ify VARIABLES, an equals sign (‘=’), a list of source variables, INTO, and a list of target
variables. There must the same number of source and target variables. The target variables
must not already exist.

By default, increasing values of a source variable (for a string, this is based on character
code comparisons) are recoded to increasing values of its target variable. To cause increasing
values of a source variable to be recoded to decreasing values of its target variable (n down
to 1), specify DESCENDING.

PRINT is currently ignored.
AUTORECODE is a procedure. It causes the data to be read.

9.3 COMPUTE

COMPUTE variable = expression.
or

COMPUTE vector(index) = expression.
COMPUTE assigns the value of an expression to a target variable. For each case, the

expression is evaluated and its value assigned to the target variable. Numeric and short
and long string variables may be assigned. When a string expression’s width differs from
the target variable’s width, the string result of the expression is truncated or padded with
spaces on the right as necessary. The expression and variable types must match.

For numeric variables only, the target variable need not already exist. Numeric variables
created by COMPUTE are assigned an F8.2 output format. String variables must be
declared before they can be used as targets for COMPUTE.

The target variable may be specified as an element of a vector (see Section 8.18 [VEC-
TOR], page 75). In this case, a vector index expression must be specified in parentheses
following the vector name. The index expression must evaluate to a numeric value that,
after rounding down to the nearest integer, is a valid index for the named vector.

Using COMPUTE to assign to a variable specified on LEAVE (see Section 8.6 [LEAVE],
page 71) resets the variable’s left state. Therefore, LEAVE should be specified following
COMPUTE, not before.

COMPUTE is a transformation. It does not cause the active file to be read.
When COMPUTE is specified following TEMPORARY (see Section 10.6 [TEMPO-

RARY], page 87), the LAG function may not be used (see [LAG], page 36).

9.4 COUNT

COUNT var name = var. . . (value. . .).

Chapter 9: Data transformations 81

Each value takes one of the following forms:
number
string
num1 THRU num2
MISSING
SYSMIS

In addition, num1 and num2 can be LO or LOWEST, or HI or HIGHEST,
respectively.

COUNT creates or replaces a numeric target variable that counts the occurrence of a
criterion value or set of values over one or more test variables for each case.

The target variable values are always nonnegative integers. They are never missing.
The target variable is assigned an F8.2 output format. See Section 4.7.4 [Input and Output
Formats], page 13. Any variables, including long and short string variables, may be test
variables.

User-missing values of test variables are treated just like any other values. They are not
treated as system-missing values. User-missing values that are criterion values or inside
ranges of criterion values are counted as any other values. However (for numeric variables),
keyword MISSING may be used to refer to all system- and user-missing values.

COUNT target variables are assigned values in the order specified. In the command
COUNT A=A B(1) /B=A B(2)., the following actions occur:

− The number of occurrences of 1 between A and B is counted.
− A is assigned this value.
− The number of occurrences of 1 between B and the new value of A is counted.
− B is assigned this value.

Despite this ordering, all COUNT criterion variables must exist before the procedure is
executed—they may not be created as target variables earlier in the command! Break such
a command into two separate commands.

The examples below may help to clarify.

A. Assuming Q0, Q2, . . . , Q9 are numeric variables, the following commands:
1. Count the number of times the value 1 occurs through these variables for each case

and assigns the count to variable QCOUNT.
2. Print out the total number of times the value 1 occurs throughout all cases using

DESCRIPTIVES. See Section 12.1 [DESCRIPTIVES], page 92, for details.
COUNT QCOUNT=Q0 TO Q9(1).
DESCRIPTIVES QCOUNT /STATISTICS=SUM.

B. Given these same variables, the following commands:
1. Count the number of valid values of these variables for each case and assigns the

count to variable QVALID.
2. Multiplies each value of QVALID by 10 to obtain a percentage of valid values, using

COMPUTE. See Section 9.3 [COMPUTE], page 80, for details.
3. Print out the percentage of valid values across all cases, using DESCRIPTIVES.

See Section 12.1 [DESCRIPTIVES], page 92, for details.

Chapter 9: Data transformations 82

COUNT QVALID=Q0 TO Q9 (LO THRU HI).
COMPUTE QVALID=QVALID*10.
DESCRIPTIVES QVALID /STATISTICS=MEAN.

9.5 FLIP

FLIP /VARIABLES=var list /NEWNAMES=var name.
FLIP transposes rows and columns in the active file. It causes cases to be swapped with

variables, and vice versa.
All variables in the transposed active file are numeric. String variables take on the

system-missing value in the transposed file.
No subcommands are required. If specified, the VARIABLES subcommand selects vari-

ables to be transformed into cases, and variables not specified are discarded. If the VARI-
ABLES subcommand is omitted, all variables are selected for transposition.

The variables specified by NEWNAMES, which must be a string variable, is used to
give names to the variables created by FLIP. Only the first 8 characters of the variable are
used. If NEWNAMES is not specified then the default is a variable named CASE LBL,
if it exists. If it does not then the variables created by FLIP are named VAR000 through
VAR999, then VAR1000, VAR1001, and so on.

When a NEWNAMES variable is available, the names must be canonicalized before
becoming variable names. Invalid characters are replaced by letter ‘V’ in the first position,
or by ‘_’ in subsequent positions. If the name thus generated is not unique, then numeric
extensions are added, starting with 1, until a unique name is found or there are no remaining
possibilities. If the latter occurs then the FLIP operation aborts.

The resultant dictionary contains a CASE LBL variable, a string variable of width 8,
which stores the names of the variables in the dictionary before the transposition. Variables
names longer than 8 characters are truncated. If the active file is subsequently transposed
using FLIP, this variable can be used to recreate the original variable names.

FLIP honors N OF CASES (see Section 10.2 [N OF CASES], page 85). It ignores TEM-
PORARY (see Section 10.6 [TEMPORARY], page 87), so that “temporary” transformations
become permanent.

9.6 IF

IF condition variable=expression.
or

IF condition vector(index)=expression.
The IF transformation conditionally assigns the value of a target expression to a target

variable, based on the truth of a test expression.
Specify a boolean-valued expression (see Chapter 5 [Expressions], page 25) to be tested

following the IF keyword. This expression is evaluated for each case. If the value is true,
then the value of the expression is computed and assigned to the specified variable. If the
value is false or missing, nothing is done. Numeric and short and long string variables may
be assigned. When a string expression’s width differs from the target variable’s width, the
string result of the expression is truncated or padded with spaces on the right as necessary.
The expression and variable types must match.

Chapter 9: Data transformations 83

The target variable may be specified as an element of a vector (see Section 8.18 [VEC-
TOR], page 75). In this case, a vector index expression must be specified in parentheses
following the vector name. The index expression must evaluate to a numeric value that,
after rounding down to the nearest integer, is a valid index for the named vector.

Using IF to assign to a variable specified on LEAVE (see Section 8.6 [LEAVE], page 71)
resets the variable’s left state. Therefore, LEAVE should be specified following IF, not before.

When IF is specified following TEMPORARY (see Section 10.6 [TEMPORARY],
page 87), the LAG function may not be used (see [LAG], page 36).

9.7 RECODE

RECODE var list (src value. . .=dest value). . . [INTO var list].

src value may take the following forms:
number
string
num1 THRU num2
MISSING
SYSMIS
ELSE

Open-ended ranges may be specified using LO or LOWEST for num1
or HI or HIGHEST for num2.

dest value may take the following forms:
num
string
SYSMIS
COPY

RECODE translates data from one range of values to another, via flexible user-specified
mappings. Data may be remapped in-place or copied to new variables. Numeric, short
string, and long string data can be recoded.

Specify the list of source variables, followed by one or more mapping specifications each
enclosed in parentheses. If the data is to be copied to new variables, specify INTO, then
the list of target variables. String target variables must already have been declared using
STRING or another transformation, but numeric target variables can be created on the fly.
There must be exactly as many target variables as source variables. Each source variable
is remapped into its corresponding target variable.

When INTO is not used, the input and output variables must be of the same type.
Otherwise, string values can be recoded into numeric values, and vice versa. When this is
done and there is no mapping for a particular value, either a value consisting of all spaces
or the system-missing value is assigned, depending on variable type.

Mappings are considered from left to right. The first src value that matches the value of
the source variable causes the target variable to receive the value indicated by the dest value.
Literal number, string, and range src value’s should be self-explanatory. MISSING as a
src value matches any user- or system-missing value. SYSMIS matches the system missing

Chapter 9: Data transformations 84

value only. ELSE is a catch-all that matches anything. It should be the last src value
specified.

Numeric and string dest value’s should be self-explanatory. COPY causes the input
values to be copied to the output. This is only valid if the source and target variables are
of the same type. SYSMIS indicates the system-missing value.

If the source variables are strings and the target variables are numeric, then there is
one additional mapping available: (CONVERT), which must be the last specified mapping.
CONVERT causes a number specified as a string to be converted to a numeric value. If the
string cannot be parsed as a number, then the system-missing value is assigned.

Multiple recodings can be specified on a single RECODE invocation. Introduce addi-
tional recodings with a slash (‘/’) to separate them from the previous recodings.

9.8 SORT CASES

SORT CASES BY var list[({D|A}] [var list[({D|A}]] ...
SORT CASES sorts the active file by the values of one or more variables.
Specify BY and a list of variables to sort by. By default, variables are sorted in ascending

order. To override sort order, specify (D) or (DOWN) after a list of variables to get
descending order, or (A) or (UP) for ascending order. These apply to all the listed variables
up until the preceding (A), (D), (UP) or (DOWN).

The sort algorithms used by SORT CASES are stable. That is, records that have equal
values of the sort variables will have the same relative order before and after sorting. As a
special case, re-sorting an already sorted file will not affect the ordering of cases.

SORT CASES is a procedure. It causes the data to be read.
SORT CASES attempts to sort the entire active file in main memory. If workspace is

exhausted, it falls back to a merge sort algorithm that involves creates numerous temporary
files.

SORT CASES may not be specified following TEMPORARY.

Chapter 10: Selecting data for analysis 85

10 Selecting data for analysis

This chapter documents PSPP commands that temporarily or permanently select data
records from the active file for analysis.

10.1 FILTER

FILTER BY var name.
FILTER OFF.

FILTER allows a boolean-valued variable to be used to select cases from the data stream
for processing.

To set up filtering, specify BY and a variable name. Keyword BY is optional but
recommended. Cases which have a zero or system- or user-missing value are excluded from
analysis, but not deleted from the data stream. Cases with other values are analyzed. To
filter based on a different condition, use transformations such as COMPUTE or RECODE
to compute a filter variable of the required form, then specify that variable on FILTER.

FILTER OFF turns off case filtering.

Filtering takes place immediately before cases pass to a procedure for analysis. Only
one filter variable may be active at a time. Normally, case filtering continues until it is
explicitly turned off with FILTER OFF. However, if FILTER is placed after TEMPORARY,
it filters only the next procedure or procedure-like command.

10.2 N OF CASES

N [OF CASES] num of cases [ESTIMATED].

N OF CASES limits the number of cases processed by any procedures that follow it in
the command stream. N OF CASES 100, for example, tells PSPP to disregard all cases after
the first 100.

When N OF CASES is specified after TEMPORARY, it affects only the next procedure
(see Section 10.6 [TEMPORARY], page 87). Otherwise, cases beyond the limit specified
are not processed by any later procedure.

If the limit specified on N OF CASES is greater than the number of cases in the active
file, it has no effect.

When N OF CASES is used along with SAMPLE or SELECT IF, the case limit is applied
to the cases obtained after sampling or case selection, regardless of how N OF CASES is
placed relative to SAMPLE or SELECT IF in the command file. Thus, the commands N OF
CASES 100 and SAMPLE .5 will both randomly sample approximately half of the active file’s
cases, then select the first 100 of those sampled, regardless of their order in the command
file.

N OF CASES with the ESTIMATED keyword gives an estimated number of cases before
DATA LIST or another command to read in data. ESTIMATED never limits the number of
cases processed by procedures. PSPP currently does not make use of case count estimates.

Chapter 10: Selecting data for analysis 86

10.3 SAMPLE

SAMPLE num1 [FROM num2].

SAMPLE randomly samples a proportion of the cases in the active file. Unless it follows
TEMPORARY, it operates as a transformation, permanently removing cases from the active
file.

The proportion to sample can be expressed as a single number between 0 and 1. If k is
the number specified, and N is the number of currently-selected cases in the active file, then
after SAMPLE k., approximately k*N cases will be selected.

The proportion to sample can also be specified in the style SAMPLE m FROM N . With this
style, cases are selected as follows:

1. If N is equal to the number of currently-selected cases in the active file, exactly m cases
will be selected.

2. If N is greater than the number of currently-selected cases in the active file, an equiv-
alent proportion of cases will be selected.

3. If N is less than the number of currently-selected cases in the active, exactly m cases
will be selected from the first N cases in the active file.

SAMPLE and SELECT IF are performed in the order specified by the syntax file.

SAMPLE is always performed before N OF CASES, regardless of ordering in the syntax
file (see Section 10.2 [N OF CASES], page 85).

The same values for SAMPLE may result in different samples. To obtain the same
sample, use the SET command to set the random number seed to the same value before
each SAMPLE. Different samples may still result when the file is processed on systems with
differing endianness or floating-point formats. By default, the random number seed is based
on the system time.

10.4 SELECT IF

SELECT IF expression.

SELECT IF selects cases for analysis based on the value of a boolean expression. Cases
not selected are permanently eliminated from the active file, unless TEMPORARY is in
effect (see Section 10.6 [TEMPORARY], page 87).

Specify a boolean expression (see Chapter 5 [Expressions], page 25). If the value of the
expression is true for a particular case, the case will be analyzed. If the expression has a
false or missing value, then the case will be deleted from the data stream.

Place SELECT IF as early in the command file as possible. Cases that are deleted early
can be processed more efficiently in time and space.

When SELECT IF is specified following TEMPORARY (see Section 10.6 [TEMPO-
RARY], page 87), the LAG function may not be used (see [LAG], page 36).

10.5 SPLIT FILE

SPLIT FILE [{LAYERED, SEPARATE}] BY var list.
SPLIT FILE OFF.

Chapter 10: Selecting data for analysis 87

SPLIT FILE allows multiple sets of data present in one data file to be analyzed separately
using single statistical procedure commands.

Specify a list of variable names to analyze multiple sets of data separately. Groups
of adjacent cases having the same values for these variables are analyzed by statistical
procedure commands as one group. An independent analysis is carried out for each group
of cases, and the variable values for the group are printed along with the analysis.

When a list of variable names is specified, one of the keywords LAYERED or SEPARATE
may also be specified. If provided, either keyword are ignored.

Groups are formed only by adjacent cases. To create a split using a variable where like
values are not adjacent in the working file, you should first sort the data by that variable
(see Section 9.8 [SORT CASES], page 84).

Specify OFF to disable SPLIT FILE and resume analysis of the entire active file as a
single group of data.

When SPLIT FILE is specified after TEMPORARY, it affects only the next procedure
(see Section 10.6 [TEMPORARY], page 87).

10.6 TEMPORARY

TEMPORARY.

TEMPORARY is used to make the effects of transformations following its execution
temporary. These transformations will affect only the execution of the next procedure or
procedure-like command. Their effects will not be saved to the active file.

The only specification on TEMPORARY is the command name.

TEMPORARY may not appear within a DO IF or LOOP construct. It may appear only
once between procedures and procedure-like commands.

Scratch variables cannot be used following TEMPORARY.

An example may help to clarify:

DATA LIST /X 1-2.
BEGIN DATA.
2
4
10
15
20
24
END DATA.
COMPUTE X=X/2.
TEMPORARY.
COMPUTE X=X+3.
DESCRIPTIVES X.
DESCRIPTIVES X.

The data read by the first DESCRIPTIVES are 4, 5, 8, 10.5, 13, 15. The data read by
the first DESCRIPTIVES are 1, 2, 5, 7.5, 10, 12.

Chapter 10: Selecting data for analysis 88

10.7 WEIGHT

WEIGHT BY var name.
WEIGHT OFF.

WEIGHT assigns cases varying weights, changing the frequency distribution of the active
file. Execution of WEIGHT is delayed until data have been read.

If a variable name is specified, WEIGHT causes the values of that variable to be used as
weighting factors for subsequent statistical procedures. Use of keyword BY is optional but
recommended. Weighting variables must be numeric. Scratch variables may not be used
for weighting (see Section 4.7.5 [Scratch Variables], page 22).

When OFF is specified, subsequent statistical procedures will weight all cases equally.
A positive integer weighting factor w on a case will yield the same statistical output as

would replicating the case w times. A weighting factor of 0 is treated for statistical purposes
as if the case did not exist in the input. Weighting values need not be integers, but negative
and system-missing values for the weighting variable are interpreted as weighting factors of
0. User-missing values are not treated specially.

When WEIGHT is specified after TEMPORARY, it affects only the next procedure (see
Section 10.6 [TEMPORARY], page 87).

WEIGHT does not cause cases in the active file to be replicated in memory.

Chapter 11: Conditional and Looping Constructs 89

11 Conditional and Looping Constructs

This chapter documents PSPP commands used for conditional execution, looping, and flow
of control.

11.1 BREAK

BREAK.

BREAK terminates execution of the innermost currently executing LOOP construct.

BREAK is allowed only inside LOOP. . .END LOOP. See Section 11.4 [LOOP], page 90,
for more details.

11.2 DO IF

DO IF condition.
. . .

[ELSE IF condition.
. . .

]. . .
[ELSE.

. . .]
END IF.

DO IF allows one of several sets of transformations to be executed, depending on user-
specified conditions.

If the specified boolean expression evaluates as true, then the block of code following
DO IF is executed. If it evaluates as missing, then none of the code blocks is executed. If
it is false, then the boolean expression on the first ELSE IF, if present, is tested in turn,
with the same rules applied. If all expressions evaluate to false, then the ELSE code block
is executed, if it is present.

When DO IF or ELSE IF is specified following TEMPORARY (see Section 10.6 [TEM-
PORARY], page 87), the LAG function may not be used (see [LAG], page 36).

11.3 DO REPEAT

DO REPEAT dummy name=expansion. . . .
. . .

END REPEAT [PRINT].

expansion takes one of the following forms:
var list
num or range. . .
’string’. . .

num or range takes one of the following forms:
number
num1 TO num2

Chapter 11: Conditional and Looping Constructs 90

DO REPEAT repeats a block of code, textually substituting different variables, numbers,
or strings into the block with each repetition.

Specify a dummy variable name followed by an equals sign (‘=’) and the list of replace-
ments. Replacements can be a list of variables (which may be existing variables or new
variables or some combination), numbers, or strings. When new variable names are speci-
fied, DO REPEAT creates them as numeric variables. When numbers are specified, runs of
increasing integers may be indicated as num1 TO num2 , so that ‘1 TO 5’ is short for ‘1 2 3 4
5’.

Multiple dummy variables can be specified. Each variable must have the same number
of replacements.

The code within DO REPEAT is repeated as many times as there are replacements for
each variable. The first time, the first value for each dummy variable is substituted; the
second time, the second value for each dummy variable is substituted; and so on.

Dummy variable substitutions work like macros. They take place anywhere in a line that
the dummy variable name occurs as a token, including command and subcommand names.
For this reason, words commonly used in command and subcommand names should not be
used as dummy variable identifiers.

If PRINT is specified on END REPEAT, the commands after substitutions are made
are printed to the listing file, prefixed by a plus sign (‘+’).

11.4 LOOP

LOOP [index var=start TO end [BY incr]] [IF condition].
. . .

END LOOP [IF condition].
LOOP iterates a group of commands. A number of termination options are offered.
Specify index var to make that variable count from one value to another by a particular

increment. index var must be a pre-existing numeric variable. start, end, and incr are
numeric expressions (see Chapter 5 [Expressions], page 25.)

During the first iteration, index var is set to the value of start. During each successive
iteration, index var is increased by the value of incr. If end > start, then the loop terminates
when index var > end; otherwise it terminates when index var < end. If incr is not specified
then it defaults to +1 or -1 as appropriate.

If end > start and incr < 0, or if end < start and incr > 0, then the loop is never executed.
index var is nevertheless set to the value of start.

Modifying index var within the loop is allowed, but it has no effect on the value of
index var in the next iteration.

Specify a boolean expression for the condition on LOOP to cause the loop to be executed
only if the condition is true. If the condition is false or missing before the loop contents are
executed the first time, the loop contents are not executed at all.

If index and condition clauses are both present on LOOP, the index variable is always
set before the condition is evaluated. Thus, a condition that makes use of the index variable
will always see the index value to be used in the next execution of the body.

Specify a boolean expression for the condition on END LOOP to cause the loop to
terminate if the condition is true after the enclosed code block is executed. The condition

Chapter 11: Conditional and Looping Constructs 91

is evaluated at the end of the loop, not at the beginning, so that the body of a loop with
only a condition on END LOOP will always execute at least once.

If neither the index clause nor either condition clause is present, then the loop is executed
MXLOOPS (see Section 13.17 [SET], page 108) times.

BREAK also terminates LOOP execution (see Section 11.1 [BREAK], page 89).
Loop index variables are by default reset to system-missing from one case to another,

not left, unless a scratch variable is used as index. When loops are nested, this is usually
undesired behavior, which can be corrected with LEAVE (see Section 8.6 [LEAVE], page 71)
or by using a scratch variable as the loop index.

When LOOP or END LOOP is specified following TEMPORARY (see Section 10.6
[TEMPORARY], page 87), the LAG function may not be used (see [LAG], page 36).

Chapter 12: Statistics 92

12 Statistics

This chapter documents the statistical procedures that PSPP supports so far.

12.1 DESCRIPTIVES

DESCRIPTIVES
/VARIABLES=var list
/MISSING={VARIABLE,LISTWISE} {INCLUDE,NOINCLUDE}
/FORMAT={LABELS,NOLABELS} {NOINDEX,INDEX} {LINE,SERIAL}
/SAVE
/STATISTICS={ALL,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,

SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,DEFAULT,
SESKEWNESS,SEKURTOSIS}

/SORT={NONE,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,SKEWNESS,
RANGE,MINIMUM,MAXIMUM,SUM,SESKEWNESS,SEKURTOSIS,NAME}

{A,D}

The DESCRIPTIVES procedure reads the active file and outputs descriptive statistics
requested by the user. In addition, it can optionally compute Z-scores.

The VARIABLES subcommand, which is required, specifies the list of variables to be
analyzed. Keyword VARIABLES is optional.

All other subcommands are optional:
The MISSING subcommand determines the handling of missing variables. If INCLUDE

is set, then user-missing values are included in the calculations. If NOINCLUDE is set,
which is the default, user-missing values are excluded. If VARIABLE is set, then missing
values are excluded on a variable by variable basis; if LISTWISE is set, then the entire case
is excluded whenever any value in that case has a system-missing or, if INCLUDE is set,
user-missing value.

The FORMAT subcommand affects the output format. Currently the LA-
BELS/NOLABELS and NOINDEX/INDEX settings are not used. When SERIAL is set,
both valid and missing number of cases are listed in the output; when NOSERIAL is set,
only valid cases are listed.

The SAVE subcommand causes DESCRIPTIVES to calculate Z scores for all the spec-
ified variables. The Z scores are saved to new variables. Variable names are generated by
trying first the original variable name with Z prepended and truncated to a maximum of 8
characters, then the names ZSC000 through ZSC999, STDZ00 through STDZ09, ZZZZ00
through ZZZZ09, ZQZQ00 through ZQZQ09, in that sequence. In addition, Z score variable
names can be specified explicitly on VARIABLES in the variable list by enclosing them in
parentheses after each variable.

The STATISTICS subcommand specifies the statistics to be displayed:

ALL All of the statistics below.

MEAN Arithmetic mean.

SEMEAN Standard error of the mean.

STDDEV Standard deviation.

Chapter 12: Statistics 93

VARIANCE Variance.

KURTOSIS Kurtosis and standard error of the kurtosis.

SKEWNESS Skewness and standard error of the skewness.

RANGE Range.

MINIMUM Minimum value.

MAXIMUM Maximum value.

SUM Sum.

DEFAULT Mean, standard deviation of the mean, minimum, maximum.

SEKURTOSIS
Standard error of the kurtosis.

SESKEWNESS
Standard error of the skewness.

The SORT subcommand specifies how the statistics should be sorted. Most of the
possible values should be self-explanatory. NAME causes the statistics to be sorted by
name. By default, the statistics are listed in the order that they are specified on the
VARIABLES subcommand. The A and D settings request an ascending or descending sort
order, respectively.

12.2 FREQUENCIES

FREQUENCIES
/VARIABLES=var list
/FORMAT={TABLE,NOTABLE,LIMIT(limit)}

{STANDARD,CONDENSE,ONEPAGE[(onepage limit)]}
{LABELS,NOLABELS}
{AVALUE,DVALUE,AFREQ,DFREQ}
{SINGLE,DOUBLE}
{OLDPAGE,NEWPAGE}

/MISSING={EXCLUDE,INCLUDE}
/STATISTICS={DEFAULT,MEAN,SEMEAN,MEDIAN,MODE,STDDEV,VARIANCE,

KURTOSIS,SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,
SESKEWNESS,SEKURTOSIS,ALL,NONE}

/NTILES=ntiles
/PERCENTILES=percent. . .
/HISTOGRAM=[MINIMUM(x min)] [MAXIMUM(x max)]

[{FREQ,PCNT}] [{NONORMAL,NORMAL}]
/PIECHART=[MINIMUM(x min)] [MAXIMUM(x max)] {NOMISSING,MISSING}

(These options are not currently implemented.)
/BARCHART=. . .
/HBAR=. . .
/GROUPED=. . .

Chapter 12: Statistics 94

The FREQUENCIES procedure outputs frequency tables for specified variables. FRE-
QUENCIES can also calculate and display descriptive statistics (including median and
mode) and percentiles.

FREQUENCIES also support graphical output in the form of histograms and pie charts.
In the future, it will be able to produce bar charts and output percentiles for grouped data.

The VARIABLES subcommand is the only required subcommand. Specify the variables
to be analyzed.

The FORMAT subcommand controls the output format. It has several possible settings:
• TABLE, the default, causes a frequency table to be output for every variable specified.

NOTABLE prevents them from being output. LIMIT with a numeric argument causes
them to be output except when there are more than the specified number of values in
the table.

• STANDARD frequency tables contain more complete information, but also to take up
more space on the printed page. CONDENSE frequency tables are less informative
but take up less space. ONEPAGE with a numeric argument will output standard
frequency tables if there are the specified number of values or less, condensed tables
otherwise. ONEPAGE without an argument defaults to a threshold of 50 values.

• LABELS causes value labels to be displayed in STANDARD frequency tables. NO-
LABLES prevents this.

• Normally frequency tables are sorted in ascending order by value. This is AVALUE.
DVALUE tables are sorted in descending order by value. AFREQ and DFREQ tables
are sorted in ascending and descending order, respectively, by frequency count.

• SINGLE spaced frequency tables are closely spaced. DOUBLE spaced frequency tables
have wider spacing.

• OLDPAGE and NEWPAGE are not currently used.

The MISSING subcommand controls the handling of user-missing values. When EX-
CLUDE, the default, is set, user-missing values are not included in frequency tables or
statistics. When INCLUDE is set, user-missing are included. System-missing values are
never included in statistics, but are listed in frequency tables.

The available STATISTICS are the same as available in DESCRIPTIVES (see
Section 12.1 [DESCRIPTIVES], page 92), with the addition of MEDIAN, the data’s
median value, and MODE, the mode. (If there are multiple modes, the smallest value
is reported.) By default, the mean, standard deviation of the mean, minimum, and
maximum are reported for each variable.

PERCENTILES causes the specified percentiles to be reported. The percentiles should
be presented at a list of numbers between 0 and 100 inclusive. The NTILES subcommand
causes the percentiles to be reported at the boundaries of the data set divided into the
specified number of ranges. For instance, /NTILES=4 would cause quartiles to be reported.

The HISTOGRAM subcommand causes the output to include a histogram for each
specified variable. The X axis by default ranges from the minimum to the maximum value
observed in the data, but the MINIMUM and MAXIMUM keywords can set an explicit
range. The Y axis by default is labeled in frequencies; use the PERCENT keyword to causes
it to be labeled in percent of the total observed count. Specify NORMAL to superimpose
a normal curve on the histogram.

Chapter 12: Statistics 95

The PIECHART adds a pie chart for each variable to the data. Each slice represents
one value, with the size of the slice proportional to the value’s frequency. By default, all
non-missing values are given slices. The MINIMUM and MAXIMUM keywords can be used
to limit the displayed slices to a given range of values. The MISSING keyword adds slices
for missing values.

12.3 EXAMINE

EXAMINE
VARIABLES=var list [BY factor list]
/STATISTICS={DESCRIPTIVES, EXTREME[(n)], ALL, NONE}
/PLOT={BOXPLOT, NPPLOT, HISTOGRAM, ALL, NONE}
/CINTERVAL n
/COMPARE={GROUPS,VARIABLES}
/ID={case number, var name}
/{TOTAL,NOTOTAL}
/PERCENTILE=[value list]={HAVERAGE, WAVERAGE, ROUND, AEM-

PIRICAL, EMPIRICAL }
/MISSING={LISTWISE, PAIRWISE} [{EXCLUDE, INCLUDE}]

[{NOREPORT,REPORT}]

The EXAMINE command is used to test how closely a distribution is to a normal
distribution. It also shows you outliers and extreme values.

The VARIABLES subcommand specifies the dependent variables and the independent
variable to use as factors for the analysis. Variables listed before the first BY keyword are
the dependent variables. The dependent variables may optionally be followed by a list of
factors which tell PSPP how to break down the analysis for each dependent variable. The
format for each factor is

var [BY var].
The STATISTICS subcommand specifies the analysis to be done. DESCRIPTIVES

will produce a table showing some parametric and non-parametrics statistics. EXTREME
produces a table showing extreme values of the dependent variable. A number in parentheses
determines how many upper and lower extremes to show. The default number is 5.

The PLOT subcommand specifies which plots are to be produced if any.
The COMPARE subcommand is only relevant if producing boxplots, and it is only

useful there is more than one dependent variable and at least one factor. If /COM-
PARE=GROUPS is specified, then one plot per dependent variable is produced, con-
taining boxplots for all the factors. If /COMPARE=VARIABLES is specified, then one
plot per factor is produced, each each containing one boxplot per dependent variable. If
the /COMPARE subcommand is ommitted, then PSPP uses the default value of /COM-
PARE=GROUPS.

The CINTERVAL subcommand specifies the confidence interval to use in calculation of
the descriptives command. The default it 95%.

The PERCENTILES subcommand specifies which percentiles are to be calculated, and
which algorithm to use for calculating them. The default is to calculate the 5, 10, 25, 50,
75, 90, 95 percentiles using the HAVERAGE algorithm.

Chapter 12: Statistics 96

The TOTAL and NOTOTAL subcommands are mutually exclusive. If NOTOTAL is
given and factors have been specified in the VARIABLES subcommand, then then statistics
for the unfactored dependent variables are produced in addition to the factored variables.
If there are no factors specified then TOTAL and NOTOTAL have no effect.

Warning! If many dependent variable are given, or factors are given for which there are
many distinct values, then EXAMINE will produce a very large quantity of output.

12.4 CROSSTABS

CROSSTABS
/TABLES=var list BY var list [BY var list]. . .
/MISSING={TABLE,INCLUDE,REPORT}
/WRITE={NONE,CELLS,ALL}
/FORMAT={TABLES,NOTABLES}

{LABELS,NOLABELS,NOVALLABS}
{PIVOT,NOPIVOT}
{AVALUE,DVALUE}
{NOINDEX,INDEX}
{BOX,NOBOX}

/CELLS={COUNT,ROW,COLUMN,TOTAL,EXPECTED,RESIDUAL,SRESIDUAL,
ASRESIDUAL,ALL,NONE}

/STATISTICS={CHISQ,PHI,CC,LAMBDA,UC,BTAU,CTAU,RISK,GAMMA,D,
KAPPA,ETA,CORR,ALL,NONE}

(Integer mode.)
/VARIABLES=var list (low,high). . .

The CROSSTABS procedure displays crosstabulation tables requested by the user. It
can calculate several statistics for each cell in the crosstabulation tables. In addition, a
number of statistics can be calculated for each table itself.

The TABLES subcommand is used to specify the tables to be reported. Any number
of dimensions is permitted, and any number of variables per dimension is allowed. The
TABLES subcommand may be repeated as many times as needed. This is the only required
subcommand in general mode.

Occasionally, one may want to invoke a special mode called integer mode. Normally, in
general mode, PSPP automatically determines what values occur in the data. In integer
mode, the user specifies the range of values that the data assumes. To invoke this mode,
specify the VARIABLES subcommand, giving a range of data values in parentheses for
each variable to be used on the TABLES subcommand. Data values inside the range are
truncated to the nearest integer, then assigned to that value. If values occur outside this
range, they are discarded. When it is present, the VARIABLES subcommand must precede
the TABLES subcommand.

In general mode, numeric and string variables may be specified on TABLES. Although
long string variables are allowed, only their initial short-string parts are used. In integer
mode, only numeric variables are allowed.

The MISSING subcommand determines the handling of user-missing values. When set
to TABLE, the default, missing values are dropped on a table by table basis. When set to

Chapter 12: Statistics 97

INCLUDE, user-missing values are included in tables and statistics. When set to REPORT,
which is allowed only in integer mode, user-missing values are included in tables but marked
with an ‘M’ (for “missing”) and excluded from statistical calculations.

Currently the WRITE subcommand is ignored.
The FORMAT subcommand controls the characteristics of the crosstabulation tables to

be displayed. It has a number of possible settings:
• TABLES, the default, causes crosstabulation tables to be output. NOTABLES sup-

presses them.
• LABELS, the default, allows variable labels and value labels to appear in the output.

NOLABELS suppresses them. NOVALLABS displays variable labels but suppresses
value labels.

• PIVOT, the default, causes each TABLES subcommand to be displayed in a pivot table
format. NOPIVOT causes the old-style crosstabulation format to be used.

• AVALUE, the default, causes values to be sorted in ascending order. DVALUE asserts
a descending sort order.

• INDEX/NOINDEX is currently ignored.
• BOX/NOBOX is currently ignored.

The CELLS subcommand controls the contents of each cell in the displayed crosstabu-
lation table. The possible settings are:

COUNT Frequency count.

ROW Row percent.

COLUMN Column percent.

TOTAL Table percent.

EXPECTED
Expected value.

RESIDUAL
Residual.

SRESIDUAL
Standardized residual.

ASRESIDUAL
Adjusted standardized residual.

ALL All of the above.

NONE Suppress cells entirely.

‘/CELLS’ without any settings specified requests COUNT, ROW, COLUMN, and TO-
TAL. If CELLS is not specified at all then only COUNT will be selected.

The STATISTICS subcommand selects statistics for computation:

CHISQ
Pearson chi-square, likelihood ratio, Fisher’s exact test, continuity correction,
linear-by-linear association.

Chapter 12: Statistics 98

PHI Phi.

CC Contingency coefficient.

LAMBDA Lambda.

UC Uncertainty coefficient.

BTAU Tau-b.

CTAU Tau-c.

RISK Risk estimate.

GAMMA Gamma.

D Somers’ D.

KAPPA Cohen’s Kappa.

ETA Eta.

CORR Spearman correlation, Pearson’s r.

ALL All of the above.

NONE No statistics.

Selected statistics are only calculated when appropriate for the statistic. Certain statis-
tics require tables of a particular size, and some statistics are calculated only in integer
mode.

‘/STATISTICS’ without any settings selects CHISQ. If the STATISTICS subcommand is
not given, no statistics are calculated.

Please note: Currently the implementation of CROSSTABS has the followings bugs:
• Pearson’s R (but not Spearman) is off a little.
• T values for Spearman’s R and Pearson’s R are wrong.
• Significance of symmetric and directional measures is not calculated.
• Asymmetric ASEs and T values for lambda are wrong.
• ASE of Goodman and Kruskal’s tau is not calculated.
• ASE of symmetric somers’ d is wrong.
• Approximate T of uncertainty coefficient is wrong.

Fixes for any of these deficiencies would be welcomed.

12.5 NPAR TESTS

NPAR TESTS

nonparametric test subcommands
.
.
.

[/STATISTICS={DESCRIPTIVES}]

Chapter 12: Statistics 99

[/MISSING={ANALYSIS, LISTWISE} {INCLUDE, EXCLUDE}]

NPAR TESTS performs nonparametric tests. Non parametric tests make very few as-
sumptions about the distribution of the data. One or more tests may be specified by using
the corresponding subcommand. If the /STATISTICS subcommand is also specified, then
summary statistics are produces for each variable that is the subject of any test.

12.5.1 Binomial test

[/BINOMIAL[(p)]=var list[(value1[, value2)]]]

The binomial test compares the observed distribution of a dichotomous variable with
that of a binomial distribution. The variable p specifies the test proportion of the binomial
distribution. The default value of 0.5 is assumed if p is omitted.

If a single value appears after the variable list, then that value is used as the threshold
to partition the observed values. Values less than or equal to the threshold value form the
first category. Values greater than the threshold form the second category.

If two values appear after the variable list, then they will be used as the values which a
variable must take to be in the respective category. Cases for which a variable takes a value
equal to neither of the specified values, take no part in the test for that variable.

If no values appear, then the variable must assume dichotomous values. If more than
two distinct, non-missing values for a variable under test are encountered then an error
occurs.

If the test proportion is equal to 0.5, then a one tailed test is reported. For any other test
proportion, a one tailed test is reported. For one tailed tests, if the test proportion is less
than or equal to the observed proportion, then the significance of observing the observed
proportion or more is reported. If the test proportion is more than the observed proportion,
then the significance of observing the observed proportion or less is reported. That is to
say, the test is always performed in the observed direction.

PSPP uses a very precise approximation to the gamma function to compute the binomial
significance. Thus, exact results are reported even for very large sample sizes.

12.5.2 Chisquare test

[/CHISQUARE=var list[(lo,hi)] [/EXPECTED={EQUAL|f1, f2 . . . fn}]]

The chisquare test produces a chi-square statistic for the differences between the expected
and observed frequencies of the categories of a variable. Optionally, a range of values may
appear after the variable list. If a range is given, then non integer values are truncated, and
values outside the specified range are excluded from the analysis.

The /EXPECTED subcommand specifies the expected values of each category. There
must be exactly one non-zero expected value, for each observed category, or the EQUAL
keywork must be specified. You may use the notation n*f to specify n consecutive expected
categories all taking a frequency of f. The frequencies given are proportions, not absolute
frequencies. The sum of the frequencies need not be 1. If no /EXPECTED subcommand
is given, then then equal frequencies are expected.

Chapter 12: Statistics 100

12.6 T-TEST

T-TEST
/MISSING={ANALYSIS,LISTWISE} {EXCLUDE,INCLUDE}
/CRITERIA=CIN(confidence)

(One Sample mode.)
TESTVAL=test value
/VARIABLES=var list

(Independent Samples mode.)
GROUPS=var(value1 [, value2])
/VARIABLES=var list

(Paired Samples mode.)
PAIRS=var list [WITH var list [(PAIRED)]]

The T-TEST procedure outputs tables used in testing hypotheses about means. It
operates in one of three modes:

• One Sample mode.

• Independent Groups mode.

• Paired mode.

Each of these modes are described in more detail below. There are two optional subcom-
mands which are common to all modes.

The /CRITERIA subcommand tells PSPP the confidence interval used in the tests. The
default value is 0.95.

The MISSING subcommand determines the handling of missing variables. If INCLUDE
is set, then user-missing values are included in the calculations, but system-missing values
are not. If EXCLUDE is set, which is the default, user-missing values are excluded as well
as system-missing values. This is the default.

If LISTWISE is set, then the entire case is excluded from analysis whenever any variable
specified in the /VARIABLES, /PAIRS or /GROUPS subcommands contains a missing
value. If ANALYSIS is set, then missing values are excluded only in the analysis for which
they would be needed. This is the default.

12.6.1 One Sample Mode

The TESTVAL subcommand invokes the One Sample mode. This mode is used to test a
population mean against a hypothesised mean. The value given to the TESTVAL subcom-
mand is the value against which you wish to test. In this mode, you must also use the
/VARIABLES subcommand to tell PSPP which variables you wish to test.

Chapter 12: Statistics 101

12.6.2 Independent Samples Mode

The GROUPS subcommand invokes Independent Samples mode or ‘Groups’ mode. This
mode is used to test whether two groups of values have the same population mean. In
this mode, you must also use the /VARIABLES subcommand to tell PSPP the dependent
variables you wish to test.

The variable given in the GROUPS subcommand is the independent variable which
determines to which group the samples belong. The values in parentheses are the specific
values of the independent variable for each group. If the parentheses are omitted and no
values are given, the default values of 1.0 and 2.0 are assumed.

If the independent variable is numeric, it is acceptable to specify only one value inside the
parentheses. If you do this, cases where the independent variable is greater than or equal to
this value belong to the first group, and cases less than this value belong to the second group.
When using this form of the GROUPS subcommand, missing values in the independent
variable are excluded on a listwise basis, regardless of whether /MISSING=LISTWISE was
specified.

12.6.3 Paired Samples Mode

The PAIRS subcommand introduces Paired Samples mode. Use this mode when repeated
measures have been taken from the same samples. If the WITH keyword is omitted, then
tables for all combinations of variables given in the PAIRS subcommand are generated. If
the WITH keyword is given, and the (PAIRED) keyword is also given, then the number of
variables preceding WITH must be the same as the number following it. In this case, tables
for each respective pair of variables are generated. In the event that the WITH keyword is
given, but the (PAIRED) keyword is omitted, then tables for each combination of variable
preceding WITH against variable following WITH are generated.

12.7 ONEWAY

ONEWAY
[/VARIABLES =] var list BY var
/MISSING={ANALYSIS,LISTWISE} {EXCLUDE,INCLUDE}
/CONTRAST= value1 [, value2] ... [,valueN]
/STATISTICS={DESCRIPTIVES,HOMOGENEITY}

The ONEWAY procedure performs a one-way analysis of variance of variables factored
by a single independent variable. It is used to compare the means of a population divided
into more than two groups.

The variables to be analysed should be given in the VARIABLES subcommand. The list of
variables must be followed by the BY keyword and the name of the independent (or factor)
variable.

You can use the STATISTICS subcommand to tell PSPP to display ancilliary information.
The options accepted are:
• DESCRIPTIVES Displays descriptive statistics about the groups factored by the in-

dependent variable.
• HOMOGENEITY Displays the Levene test of Homogeneity of Variance for the variables

and their groups.

Chapter 12: Statistics 102

The CONTRAST subcommand is used when you anticipate certain differences between the
groups. The subcommand must be followed by a list of numerals which are the coefficients
of the groups to be tested. The number of coefficients must correspond to the number of
distinct groups (or values of the independent variable). If the total sum of the coefficients
are not zero, then PSPP will display a warning, but will proceed with the analysis. The
CONTRAST subcommand may be given up to 10 times in order to specify different contrast
tests.

12.8 RANK

RANK
[VARIABLES=] var list [{A,D}] [BY var list]
/TIES={MEAN,LOW,HIGH,CONDENSE}
/FRACTION={BLOM,TUKEY,VW,RANKIT}
/PRINT[={YES,NO}
/MISSING={EXCLUDE,INCLUDE}

/RANK [INTO var list]
/NTILES(k) [INTO var list]
/NORMAL [INTO var list]
/PERCENT [INTO var list]
/RFRACTION [INTO var list]
/PROPORTION [INTO var list]
/N [INTO var list]
/SAVAGE [INTO var list]

The RANK command ranks variables and stores the results into new variables.
The VARIABLES subcommand, which is mandatory, specifies one or more variables

whose values are to be ranked. After each variable, ‘A’ or ‘D’ may appear, indicating that
the variable is to be ranked in ascending or descending order. Ascending is the default. If
a BY keyword appears, it should be followed by a list of variables which are to serve as
group variables. In this case, the cases are gathered into groups, and ranks calculated for
each group.

The TIES subcommand specifies how tied values are to be treated. The default is to
take the mean value of all the tied cases.

The FRACTION subcommand specifies how proportional ranks are to be calculated.
This only has any effect if NORMAL or PROPORTIONAL rank functions are requested.

The PRINT subcommand may be used to specify that a summary of the rank variables
created should appear in the output.

The function subcommands are RANK, NTILES, NORMAL, PERCENT, RFRAC-
TION, PROPORTION and SAVAGE. Any number of function subcommands may appear.
If none are given, then the default is RANK. The NTILES subcommand must take an integer
specifying the number of partitions into which values should be ranked. Each subcommand
may be followed by the INTO keyword and a list of variables which are the variables to be
created and receive the rank scores. There may be as many variables specified as there are
variables named on the VARIABLES subcommand. If fewer are specified, then the variable
names are automatically created.

Chapter 12: Statistics 103

The MISSING subcommand determines how user missing values are to be treated. A
setting of EXCLUDE means that variables whose values are user-missing are to be excluded
from the rank scores. A setting of INCLUDE means they are to be included. The default
is EXCLUDE.

12.9 REGRESSION

The REGRESSION procedure fits linear models to data via least-squares estimation. The
procedure is appropriate for data which satisfy those assumptions typical in linear regres-
sion:

• The data set contains n observations of a dependent variable, say Y1, . . . , Yn, and n
observations of one or more explanatory variables. Let X11, X12, . . . , X1n denote the
n observations of the first explanatory variable; X21,. . . ,X2n denote the n observations
of the second explanatory variable; Xk1,. . . ,Xkn denote the n observations of the kth
explanatory variable.

• The dependent variable Y has the following relationship to the explanatory variables:
Yi = b0 + b1X1i + ... + bkXki + Zi where b0, b1, . . . , bk are unknown coefficients, and
Z1, . . . , Zn are independent, normally distributed “noise” terms with mean zero and
common variance. The noise, or “error” terms are unobserved. This relationship is
called the “linear model.”

The REGRESSION procedure estimates the coefficients b0, . . . , bk and produces output
relevant to inferences for the linear model.

12.9.1 Syntax

REGRESSION
/VARIABLES=var list
/DEPENDENT=var list
/STATISTICS={ALL, DEFAULTS, R, COEFF, ANOVA, BCOV}
/SAVE={PRED, RESID}

The REGRESSION procedure reads the active file and outputs statistics relevant to the
linear model specified by the user.

The VARIABLES subcommand, which is required, specifies the list of variables to be
analyzed. Keyword VARIABLES is required. The DEPENDENT subcommand specifies
the dependent variable of the linear model. The DEPENDENT subcommand is required.
All variables listed in the VARIABLES subcommand, but not listed in the DEPENDENT
subcommand, are treated as explanatory variables in the linear model.

All other subcommands are optional:

The STATISTICS subcommand specifies the statistics to be displayed:

ALL All of the statistics below.

R The ratio of the sums of squares due to the model to the total sums of squares
for the dependent variable.

COEFF A table containing the estimated model coefficients and their standard errors.

ANOVA Analysis of variance table for the model.

Chapter 12: Statistics 104

BCOV The covariance matrix for the estimated model coefficients.

The SAVE subcommand causes PSPP to save the residuals or predicted values from the
fitted model to the active file. PSPP will store the residuals in a variable called RES1 if no
such variable exists, RES2 if RES1 already exists, RES3 if RES1 and RES2 already exist,
etc. It will choose the name of the variable for the predicted values similarly, but with
PRED as a prefix.

12.9.2 Examples

The following PSPP syntax will generate the default output and save the predicted values
and residuals to the active file.

title ’Demonstrate REGRESSION procedure’.
data list / v0 1-2 (A) v1 v2 3-22 (10).
begin data.
b 7.735648 -23.97588
b 6.142625 -19.63854
a 7.651430 -25.26557
c 6.125125 -16.57090
a 8.245789 -25.80001
c 6.031540 -17.56743
a 9.832291 -28.35977
c 5.343832 -16.79548
a 8.838262 -29.25689
b 6.200189 -18.58219
end data.
list.
regression /variables=v0 v1 v2 /statistics defaults /dependent=v2

/save pred resid /method=enter.

Chapter 13: Utilities 105

13 Utilities

Commands that don’t fit any other category are placed here.

Most of these commands are not affected by commands like IF and LOOP: they take
effect only once, unconditionally, at the time that they are encountered in the input.

13.1 ADD DOCUMENT

ADD DOCUMENT
’line one’ ’line two’ . . . ’last line’ .

ADD DOCUMENT adds one or more lines of descriptive commentary to the active file.
Documents added in this way are saved to system files. They can be viewed using SYSFILE
INFO or DISPLAY DOCUMENTS. They can be removed from the active file with DROP
DOCUMENTS.

Each line of documentary text must be enclosed in quotation marks, and may not be
more than 80 bytes long. See Section 13.4 [DOCUMENT], page 105.

13.2 CD

CD ’new directory’ .

CD changes the current directory. The new directory will become that specified by the
command.

13.3 COMMENT

Two possibles syntaxes:
COMMENT comment text
*comment text

COMMENT is ignored. It is used to provide information to the author and other readers
of the PSPP syntax file.

COMMENT can extend over any number of lines. Don’t forget to terminate it with a
dot or a blank line.

13.4 DOCUMENT

DOCUMENT documentary text.

DOCUMENT adds one or more lines of descriptive commentary to the active file. Doc-
uments added in this way are saved to system files. They can be viewed using SYSFILE
INFO or DISPLAY DOCUMENTS. They can be removed from the active file with DROP
DOCUMENTS.

Specify the documentary text following the DOCUMENT keyword. It is interpreted
literally — any quotes or other punctuation marks will be included in the file. You can
extend the documentary text over as many lines as necessary. Lines are truncated at 80
bytes. Don’t forget to terminate the command with a dot or a blank line. See Section 13.1
[ADD DOCUMENT], page 105.

Chapter 13: Utilities 106

13.5 DISPLAY DOCUMENTS

DISPLAY DOCUMENTS.

DISPLAY DOCUMENTS displays the documents in the active file. Each document is
preceded by a line giving the time and date that it was added. See Section 13.4 [DOCU-
MENT], page 105.

13.6 DISPLAY FILE LABEL

DISPLAY FILE LABEL.

DISPLAY FILE LABEL displays the file label contained in the active file, if any. See
Section 13.11 [FILE LABEL], page 106.

This command is a PSPP extension.

13.7 DROP DOCUMENTS

DROP DOCUMENTS.

DROP DOCUMENTS removes all documents from the active file. New documents can
be added with DOCUMENT (see Section 13.4 [DOCUMENT], page 105).

DROP DOCUMENTS changes only the active file. It does not modify any system files
stored on disk.

13.8 ECHO

ECHO ’arbitrary text’ .

Use ECHO to write arbitrary text to the output stream. The text should be enclosed
in quotation marks following the normal rules for string tokens (see Section 4.1 [Tokens],
page 7).

13.9 ERASE

ERASE FILE file name.

ERASE FILE deletes a file from the local filesystem. file name must be quoted. This
command cannot be used if the SAFER setting is active.

13.10 EXECUTE

EXECUTE.

EXECUTE causes the active file to be read and all pending transformations to be exe-
cuted.

13.11 FILE LABEL

FILE LABEL file label.

FILE LABEL provides a title for the active file. This title will be saved into system files
and portable files that are created during this PSPP run.

file label need not be quoted. If quotes are included, they become part of the file label.

Chapter 13: Utilities 107

13.12 FINISH

FINISH.

FINISH terminates the current PSPP session and returns control to the operating sys-
tem.

13.13 HOST

HOST.

HOST suspends the current PSPP session and temporarily returns control to the oper-
ating system. This command cannot be used if the SAFER setting is active.

13.14 INCLUDE

INCLUDE [FILE=]’file-name’.

INCLUDE causes the PSPP command processor to read an additional command file as
if it were included bodily in the current command file. If errors are encountered in the
included file, then command processing will stop and no more commands will be processed.
Include files may be nested to any depth, up to the limit of available memory.

The INSERT command (see Section 13.15 [INSERT], page 107) may be used instead of
INCLUDE if you require more flexible options. The syntax

INCLUDE FILE=file-name.

functions identically to

INSERT FILE=file-name ERROR=STOP CD=NO SYNTAX=BATCH.

13.15 INSERT

INSERT [FILE=]’file-name’
[CD={NO,YES}]
[ERROR={CONTINUE,STOP}]
[SYNTAX={BATCH,INTERACTIVE}].

INSERT is similar to INCLUDE (see Section 13.14 [INCLUDE], page 107) but somewhat
more flexible. It causes the command processor to read a file as if it were embedded in the
current command file.

If ‘CD=YES’ is specified, then before including the file, the current directory will be
changed to the directory of the included file. The default setting is ‘CD=NO’. Note that
this directory will remain current until it is changed explicitly (with the CD command, or
a subsequent INSERT command with the ‘CD=YES’ option). It will not revert to its original
setting even after the included file is finished processing.

If ‘ERROR=STOP’ is specified, errors encountered in the inserted file will cause processing
to immediately cease. Otherwise processing will continue at the next command. The default
setting is ‘ERROR=CONTINUE’.

If ‘SYNTAX=INTERACTIVE’ is specified then the syntax contained in the included file must
conform to interactive syntax conventions. See Section 4.3 [Syntax Variants], page 9. The
default setting is ‘SYNTAX=BATCH’.

Chapter 13: Utilities 108

13.16 PERMISSIONS

PERMISSIONS
FILE=’file-name’
/PERMISSIONS = {READONLY,WRITEABLE}.

PERMISSIONS changes the permissions of a file. There is one mandatory subcommand
which specifies the permissions to which the file should be changed. If you set a file’s
permission to READONLY, then the file will become unwritable either by you or anyone
else on the system. If you set the permission to WRITEABLE, then the file will become
writeable by you; the permissions afforded to others will be unchanged. This command
cannot be used if the SAFER setting is active.

13.17 SET

SET

(data input)
/BLANKS={SYSMIS,’.’,number}
/DECIMAL={DOT,COMMA}
/FORMAT=fmt spec
/EPOCH={AUTOMATIC,year}
/RIB={NATIVE,MSBFIRST,LSBFIRST,VAX}
/RRB={NATIVE,ISL,ISB,IDL,IDB,VF,VD,VG,ZS,ZL}

(program input)
/ENDCMD=’.’
/NULLINE={ON,OFF}

(interaction)
/CPROMPT=’cprompt string’
/DPROMPT=’dprompt string’
/ERRORBREAK={OFF,ON}
/MXERRS=max errs
/MXWARNS=max warnings
/PROMPT=’prompt’
/WORKSPACE=workspace size

(program execution)
/MEXPAND={ON,OFF}
/MITERATE=max iterations
/MNEST=max nest
/MPRINT={ON,OFF}
/MXLOOPS=max loops
/SEED={RANDOM,seed value}
/UNDEFINED={WARN,NOWARN}

(data output)

Chapter 13: Utilities 109

/CC{A,B,C,D,E}={’npre,pre,suf,nsuf’,’npre.pre.suf.nsuf’}
/DECIMAL={DOT,COMMA}
/FORMAT=fmt spec
/WIB={NATIVE,MSBFIRST,LSBFIRST,VAX}
/WRB={NATIVE,ISL,ISB,IDL,IDB,VF,VD,VG,ZS,ZL}

(output routing)
/ECHO={ON,OFF}
/ERRORS={ON,OFF,TERMINAL,LISTING,BOTH,NONE}
/INCLUDE={ON,OFF}
/MESSAGES={ON,OFF,TERMINAL,LISTING,BOTH,NONE}
/PRINTBACK={ON,OFF}
/RESULTS={ON,OFF,TERMINAL,LISTING,BOTH,NONE}

(output driver options)
/HEADERS={NO,YES,BLANK}
/LENGTH={NONE,length in lines}
/LISTING={ON,OFF,’file-name’}
/MORE={ON,OFF}
/WIDTH={NARROW,WIDTH,n characters}

(logging)
/JOURNAL={ON,OFF} [’file-name’]

(system files)
/COMPRESSION={ON,OFF}
/SCOMPRESSION={ON,OFF}

(security)
/SAFER=ON

(obsolete settings accepted for compatibility, but ignored)
/BOXSTRING={’xxx’,’xxxxxxxxxxx’}
/CASE={UPPER,UPLOW}
/CPI=cpi value
/DISK={ON,OFF}
/HIGHRES={ON,OFF}
/HISTOGRAM=’c’
/LOWRES={AUTO,ON,OFF}
/LPI=lpi value
/MENUS={STANDARD,EXTENDED}
/MXMEMORY=max memory
/SCRIPTTAB=’c’
/TB1={’xxx’,’xxxxxxxxxxx’}
/TBFONTS=’string’
/XSORT={YES,NO}

Chapter 13: Utilities 110

SET allows the user to adjust several parameters relating to PSPP’s execution. Since
there are many subcommands to this command, its subcommands will be examined in
groups.

On subcommands that take boolean values, ON and YES are synonym, and as are OFF
and NO, when used as subcommand values.

The data input subcommands affect the way that data is read from data files. The data
input subcommands are

BLANKS This is the value assigned to an item data item that is empty or contains only
white space. An argument of SYSMIS or ’.’ will cause the system-missing
value to be assigned to null items. This is the default. Any real value may be
assigned.

DECIMAL
The default DOT setting causes the decimal point character to be ‘.’ and the
grouping character to be ‘,’. A setting of COMMA causes the decimal point
character to be ‘,’ and the grouping character to be ‘.’.

FORMAT Allows the default numeric input/output format to be specified. The default is
F8.2. See Section 4.7.4 [Input and Output Formats], page 13.

EPOCH Specifies the range of years used when a 2-digit year is read from a data file or
used in a date construction expression (see Section 5.7.8.4 [Date Construction],
page 33). If a 4-digit year is specified for the epoch, then 2-digit years are
interpreted starting from that year, known as the epoch. If AUTOMATIC (the
default) is specified, then the epoch begins 69 years before the current date.

RIB
PSPP extension to set the byte ordering (endianness) used for reading data in IB
or PIB format (see Section 4.7.4.4 [Binary and Hexadecimal Numeric Formats],
page 18). In MSBFIRST ordering, the most-significant byte appears at the
left end of a IB or PIB field. In LSBFIRST ordering, the least-significant byte
appears at the left end. VAX ordering is like MSBFIRST, except that each pair
of bytes is in reverse order. NATIVE, the default, is equivalent to MSBFIRST
or LSBFIRST depending on the native format of the machine running PSPP.

RRB
PSPP extension to set the floating-point format used for reading data in RB for-
mat (see Section 4.7.4.4 [Binary and Hexadecimal Numeric Formats], page 18).
The possibilities are:

NATIVE The native format of the machine running PSPP. Equivalent to
either IDL or IDB.

ISL 32-bit IEEE 754 single-precision floating point, in little-endian byte
order.

ISB 32-bit IEEE 754 single-precision floating point, in big-endian byte
order.

IDL 64-bit IEEE 754 double-precision floating point, in little-endian
byte order.

Chapter 13: Utilities 111

IDB 64-bit IEEE 754 double-precision floating point, in big-endian byte
order.

VF 32-bit VAX F format, in VAX-endian byte order.

VD 64-bit VAX D format, in VAX-endian byte order.

VG 64-bit VAX G format, in VAX-endian byte order.

ZS 32-bit IBM Z architecture short format hexadecimal floating point,
in big-endian byte order.

ZL 64-bit IBM Z architecture long format hexadecimal floating point,
in big-endian byte order.
Z architecture also supports IEEE 754 floating point. The ZS and
ZL formats are only for use with very old input files.

The default is NATIVE.

Program input subcommands affect the way that programs are parsed when they are
typed interactively or run from a command file. They are

ENDCMD This is a single character indicating the end of a command. The default is ‘.’.
Don’t change this.

NULLINE Whether a blank line is interpreted as ending the current command. The default
is ON.

Interaction subcommands affect the way that PSPP interacts with an online user. The
interaction subcommands are

CPROMPT
The command continuation prompt. The default is ‘ > ’.

DPROMPT
Prompt used when expecting data input within BEGIN DATA (see Section 6.1
[BEGIN DATA], page 43). The default is ‘data> ’.

ERRORBREAK
Whether an error causes PSPP to stop processing the current command file
after finishing the current command. The default is OFF.

MXERRS The maximum number of errors before PSPP halts processing of the current
command file. The default is 50.

MXWARNS
The maximum number of warnings + errors before PSPP halts processing the
current command file. The default is 100.

PROMPT The command prompt. The default is ‘PSPP> ’.

Program execution subcommands control the way that PSPP commands execute. The
program execution subcommands are

MEXPAND
MITERATE
MNEST
MPRINT Currently not used.

Chapter 13: Utilities 112

MXLOOPS
The maximum number of iterations for an uncontrolled loop (see Section 11.4
[LOOP], page 90).

SEED The initial pseudo-random number seed. Set to a real number or to RANDOM,
which will obtain an initial seed from the current time of day.

UNDEFINED
Currently not used.

WORKSPACE
The maximum amount of memory that PSPP will use to store data being
processed. If memory in excess of the workspace size is required, then PSPP
will start to use temporary files to store the data. Setting a higher value will,
in general, mean procedures will run faster, but may cause other applications
to run slower. On platforms without virtual memory management, setting a
very large workspace may cause PSPP to abort.

Data output subcommands affect the format of output data. These subcommands are

CCA
CCB
CCC
CCD
CCE

Set up custom currency formats. See Section 4.7.4.2 [Custom Currency For-
mats], page 16, for details.

DECIMAL
The default DOT setting causes the decimal point character to be ‘.’. A setting
of COMMA causes the decimal point character to be ‘,’.

FORMAT Allows the default numeric input/output format to be specified. The default is
F8.2. See Section 4.7.4 [Input and Output Formats], page 13.

WIB
PSPP extension to set the byte ordering (endianness) used for writing data in IB
or PIB format (see Section 4.7.4.4 [Binary and Hexadecimal Numeric Formats],
page 18). In MSBFIRST ordering, the most-significant byte appears at the
left end of a IB or PIB field. In LSBFIRST ordering, the least-significant byte
appears at the left end. VAX ordering is like MSBFIRST, except that each pair
of bytes is in reverse order. NATIVE, the default, is equivalent to MSBFIRST
or LSBFIRST depending on the native format of the machine running PSPP.

WRB
PSPP extension to set the floating-point format used for writing data in RB for-
mat (see Section 4.7.4.4 [Binary and Hexadecimal Numeric Formats], page 18).
The choices are the same as SET RIB. The default is NATIVE.

Output routing subcommands affect where the output of transformations and procedures
is sent. These subcommands are

Chapter 13: Utilities 113

ECHO
If turned on, commands are written to the listing file as they are read from
command files. The default is OFF.

ERRORS
INCLUDE
MESSAGES
PRINTBACK
RESULTS Currently not used.

Output driver option subcommands affect output drivers’ settings. These subcommands
are

HEADERS
LENGTH
LISTING
MORE
PAGER
WIDTH

Logging subcommands affect logging of commands executed to external files. These
subcommands are

JOURNAL
LOG These subcommands, which are synonyms, control the journal. The default is

ON, which causes commands entered interactively to be written to the journal
file. Commands included from syntax files that are included interactively and
error messages printed by PSPP are also written to the journal file, prefixed by
‘>’. OFF disables use of the journal.
The journal is named ‘pspp.jnl’ by default. A different name may be specified.

System file subcommands affect the default format of system files produced by PSPP.
These subcommands are

COMPRESSION
Not currently used.

SCOMPRESSION
Whether system files created by SAVE or XSAVE are compressed by default.
The default is ON.

Security subcommands affect the operations that commands are allowed to perform.
The security subcommands are

SAFER Setting this option disables the following operations:
• The ERASE command.
• The HOST command.
• The PERMISSIONS command.
• Pipes (file names beginning or ending with ‘|’).

Be aware that this setting does not guarantee safety (commands can still over-
write files, for instance) but it is an improvement. When set, this setting cannot
be reset during the same session, for obvious security reasons.

Chapter 13: Utilities 114

13.18 SHOW

SHOW
[ALL]
[BLANKS]
[CC]
[CCA]
[CCB]
[CCC]
[CCD]
[CCE]
[COPYING]
[DECIMALS]
[ENDCMD]
[FORMAT]
[LENGTH]
[MXERRS]
[MXLOOPS]
[MXWARNS]
[SCOMPRESSION]
[UNDEFINED]
[WARRANTY]
[WEIGHT]
[WIDTH]

SHOW can be used to display the current state of PSPP’s execution parameters. Param-
eters that can be changed using SET (see Section 13.17 [SET], page 108), can be examined
using SHOW using the subcommand with the same name. SHOW supports the following
additional subcommands:

ALL Show all settings.

CC Show all custom currency settings (CCA through CCE).

WARRANTY Show details of the lack of warranty for PSPP.

COPYING Display the terms of PSPP’s copyright licence (see Chapter 2 [License], page 2).

Specifying SHOW without any subcommands is equivalent to SHOW ALL.

13.19 SUBTITLE

SUBTITLE ’subtitle string’.
or

SUBTITLE subtitle string.

SUBTITLE provides a subtitle to a particular PSPP run. This subtitle appears at the
top of each output page below the title, if headers are enabled on the output device.

Specify a subtitle as a string in quotes. The alternate syntax that did not require quotes
is now obsolete. If it is used then the subtitle is converted to all uppercase.

Chapter 13: Utilities 115

13.20 TITLE

TITLE ’title string’.
or

TITLE title string.
TITLE provides a title to a particular PSPP run. This title appears at the top of each

output page, if headers are enabled on the output device.
Specify a title as a string in quotes. The alternate syntax that did not require quotes is

now obsolete. If it is used then the title is converted to all uppercase.

Chapter 14: Not Implemented 116

14 Not Implemented

This chapter lists parts of the PSPP language that are not yet implemented.

2SLS Two stage least squares regression

ACF Autocorrelation function

ADD FILES
Add files to dictionary

ALSCAL Multidimensional scaling

ANACOR Correspondence analysis

ANOVA Factorial analysis of variance

CASEPLOT
Plot time series

CASESTOVARS
Restructure complex data

CATPCA Categorical principle components analysis

CATREG Categorical regression

CCF Time series cross correlation

CLEAR TRANSFORMATIONS
Clears transformations from active file

CLUSTER
Hierachial clustering

CONJOINT
Analyse full concept data

CORRESPONDENCE
Show correspondence

COXREG Cox proportional hazards regression

CREATE Create time series data

CSDESCRIPTIVES
Complex samples descriptives

CSGLM Complex samples GLM

CSLOGISTIC
Complex samples logistic regression

CSPLAN Complex samples design

CSSELECT
Select complex samples

CSTABULATE
Tabulate complex samples

Chapter 14: Not Implemented 117

CTABLES
Display complex samples

CURVEFIT
Fit curve to line plot

DATAFILE ATTRIBUTE
User defined datafile attributes

DATASET
Alternate data set

DATE Create time series data

DEFINE Syntax macros

DETECTANOMALY
Find unusual cases

DISCRIMINANT
Linear discriminant analysis

EDIT obsolete

END FILE TYPE
Ends complex data input

FACTOR Factor analysis

FILE TYPE
Complex data input

FIT Goodness of Fit

GENLOG Categorical model fitting

GET TRANSLATE
Read other file formats

GGRAPH Custom defined graphs

GLM General Linear Model

GRAPH Draw graphs

HILOGLINEAR
Hierarchial loglinear models

HOMALS Homogeneity analysis

IGRAPH Interactive graphs

INFO Local Documentation

INSERT Insert file

KEYED DATA LIST
Read nonsequential data

KM Kaplan-Meier

Chapter 14: Not Implemented 118

LOGISTIC REGRESSION
Regression Analysis

LOGLINEAR
General model fitting

MANOVA Multivariate analysis of variance

MAPS Geographical display

MATRIX Matrix processing

MATRIX DATA
Matrix data input

MCONVERT
Convert covariance/correlation matrices

MIXED Mixed linear models

MODEL CLOSE
Close server connection

MODEL HANDLE
Define server connection

MODEL LIST
Show existing models

MODEL NAME
Specify model label

MRSETS Multiple response sets

MULTIPLE CORRESPONDENCE
Multiple correspondence analysis

MULT RESPONSE
Multiple reponse analysis

MVA Missing value analysis

NAIVEBAYES
Small sample bayesian prediction

NLR Non Linear Regression

NOMREG
Multinomial logistic regression

NONPAR CORR
Nonparametric correlation

NUMBERED
OLAP CUBES

On-line analytical processing

OMS Output management

Chapter 14: Not Implemented 119

ORTHOPLAN
Orthogonal effects design

OVERALS
Nonlinear canonical correlation

PACF Partial autocorrelation

PARTIAL CORR
Partial correlation

PLANCARDS
Conjoint analysis planning

PLUM Estimate ordinal regression models

POINT Marker in keyed file

PPLOT Plot time series variables

PREDICT
Specify forecast period

PREFSCAL
Multidimensional unfolding

PRESERVE
Push settings

PRINCALS
PCA by alternating least squares

PROBIT Probit analysis

PROCEDURE OUTPUT
Specify output file

PROXIMITIES
Pairwise similarity

PROXSCAL
Multidimensional scaling of proximity data

QUICK CLUSTER
Fast clustering

RATIO STATISTICS
Descriptives of ratios

READ MODEL
Read new model

RECORD TYPE
Defines a type of record within FILE TYPE

REFORMAT
Read obsolete files

Chapter 14: Not Implemented 120

RELIABILITY
Reliability estimates

REPEATING DATA
Specify multiple cases per input record

REPORT Pretty print working file

RESTORE
Restore settings

RMV Replace missing values

ROC Receiver operating characteristic

SAVE TRANSLATE
Save to foriegn format

SCRIPT Run script file

SEASON Estimate seasonal factors

SELECTPRED
Select predictor variables

SPCHART
Plot control charts

SPECTRA
Plot spectral density

SUMMARIZE
Univariate statistics

SURVIVAL
Survival analysis

TDISPLAY
Display active models

TREE Create classification tree

TSAPPLY
Apply time series model

TSET Set time sequence variables

TSHOW Show time sequence variables

TSMODEL
Estimate time series model

TSPLOT Plot time sequence variables

TWOSTEP CLUSTER
Cluster observations

UNIANOVA
Univariate analysis

Chapter 14: Not Implemented 121

UNNUMBERED
obsolete

UPDATE Update working file

VALIDATEDATA
Identify suspicious cases

VARCOMP
Estimate variance

VARSTOCASES
Restructure complex data

VERIFY Report time series

WLS Weighted least squares regression

XGRAPH High resolution charts

Chapter 15: Bugs 122

15 Bugs

PSPP does have bugs. We do our best to fix them, but our limited resources
mean that some may remain for a long time. Our best alternative is to make
you aware of PSPP’s known bugs. To see a list, visit PSPP’s project webpage at
https://savannah.gnu.org/projects/pspp. You can also submit your own bug report
there: click on “Bugs,” then on “Submit a Bug,” and fill out the form. Alternatively,
PSPP bug reports may be sent by email to <bug-gnu-pspp@gnu.org>.

For known bugs in individual language features, see the documentation for that feature.

https://savannah.gnu.org/projects/pspp

Chapter 16: Function Index 123

16 Function Index

(
(variable) . 36

A
ABS . 27
ACOS . 28
ANY . 29
ARCOS . 28
ARSIN . 28
ARTAN . 28
ASIN . 28
ATAN . 28

C
CDF.BERNOULLI . 41
CDF.BETA . 37
CDF.BINOMIAL . 41
CDF.CAUCHY . 38
CDF.CHISQ . 38
CDF.EXP . 38
CDF.F . 38
CDF.GAMMA . 38
CDF.GEOM . 42
CDF.HALFNRM . 39
CDF.HYPER . 42
CDF.IGAUSS . 39
CDF.LAPLACE . 39
CDF.LNORMAL . 39
CDF.LOGISTIC . 39
CDF.NEGBIN . 42
CDF.NORMAL . 39
CDF.PARETO . 40
CDF.POISSON . 42
CDF.RAYLEIGH . 40
CDF.SMOD . 40
CDF.SRANGE . 40
CDF.T . 40
CDF.T1G . 41
CDF.T2G . 41
CDF.UNIFORM . 41
CDF.VBNOR . 37
CDF.WEIBULL . 41
CDFNORM . 40
CFVAR . 29
CONCAT . 30
COS . 28
CTIME.DAYS . 32
CTIME.HOURS . 33
CTIME.MINUTES . 33
CTIME.SECONDS . 33

D
DATE.DMY . 33
DATE.MDY . 33
DATE.MOYR . 33
DATE.QYR . 33
DATE.WKYR . 33
DATE.YRDAY . 34
DATEDIFF . 35
DATESUM . 35

E
EXP . 27

I
IDF.BETA . 37
IDF.CAUCHY . 38
IDF.CHISQ . 38
IDF.EXP . 38
IDF.F . 38
IDF.GAMMA . 38
IDF.HALFNRM . 39
IDF.IGAUSS . 39
IDF.LAPLACE . 39
IDF.LNORMAL . 39
IDF.LOGISTIC . 39
IDF.NORMAL . 39
IDF.PARETO . 40
IDF.RAYLEIGH . 40
IDF.SMOD . 40
IDF.SRANGE . 40
IDF.T . 40
IDF.T1G . 41
IDF.T2G . 41
IDF.UNIFORM . 41
IDF.WEIBULL . 41
INDEX . 30

L
LAG . 36
LENGTH . 30
LG10 . 27
LN . 27
LNGAMMA . 27
LOWER . 30
LPAD . 30
LTRIM . 30, 31

M
MAX . 29
MEAN . 29

Chapter 16: Function Index 124

MIN . 29
MISSING . 28
MOD . 27
MOD10 . 27

N
NCDF.BETA . 37
NCDF.CHISQ . 38
NCDF.F . 38
NCDF.T . 41
NMISS . 28
NORMAL . 40
NPDF.BETA . 37
NPDF.CHISQ . 38
NPDF.F . 38
NPDF.T . 41
NUMBER . 31
NVALID . 28

P
PDF.BERNOULLI . 41
PDF.BETA . 37
PDF.BINOMIAL . 41
PDF.BVNOR . 37
PDF.CAUCHY . 38
PDF.CHISQ . 38
PDF.EXP . 38
PDF.F . 38
PDF.GAMMA . 38
PDF.GEOM . 42
PDF.HALFNRM . 39
PDF.HYPER . 42
PDF.IGAUSS . 39
PDF.LANDAU . 39
PDF.LAPLACE . 39
PDF.LNORMAL . 39
PDF.LOG . 42
PDF.LOGISTIC . 39
PDF.NEGBIN . 42
PDF.NORMAL . 39
PDF.NTAIL . 40
PDF.PARETO . 40
PDF.POISSON . 42
PDF.RAYLEIGH . 40
PDF.RTAIL . 40
PDF.T . 40
PDF.T1G . 41
PDF.T2G . 41
PDF.UNIFORM . 41
PDF.WEIBULL . 41
PDF.XPOWER . 38
PROBIT . 40

R
RANGE . 29

RINDEX . 31
RND . 27
RPAD . 31
RTRIM . 31
RV.BERNOULLI . 41
RV.BETA . 37
RV.BINOMIAL . 41
RV.CAUCHY . 38
RV.CHISQ . 38
RV.EXP . 38
RV.F . 38
RV.GAMMA . 38
RV.GEOM . 42
RV.HALFNRM . 39
RV.HYPER . 42
RV.IGAUSS . 39
RV.LANDAU . 39
RV.LAPLACE . 39
RV.LEVY . 39
RV.LNORMAL . 39
RV.LOG . 42
RV.LOGISTIC . 39
RV.LVSKEW . 39
RV.NEGBIN . 42
RV.NORMAL . 40
RV.NTAIL . 40
RV.PARETO . 40
RV.POISSON . 42
RV.RAYLEIGH . 40
RV.RTAIL . 40
RV.T . 41
RV.UNIFORM . 41
RV.WEIBULL . 41
RV.XPOWER . 38

S
SD . 30
SIG.CHISQ . 38
SIG.F . 38
SIN . 28
SQRT . 27
STRING . 31
SUBSTR . 31, 32
SUM . 30
SYSMIS . 28

T
TAN . 28
TIME.DAYS . 32
TIME.HMS . 32
TRUNC . 27

U
UNIFORM . 41
UPCASE . 32

Chapter 16: Function Index 125

V
VALUE . 29
VARIANCE . 30

X
XDATE.DATE . 34
XDATE.HOUR . 34
XDATE.JDAY . 34
XDATE.MDAY . 34
XDATE.MINUTE . 34

XDATE.MONTH . 34
XDATE.QUARTER . 34
XDATE.SECOND . 34
XDATE.TDAY . 34
XDATE.TIME . 35
XDATE.WEEK . 35
XDATE.WKDAY . 35
XDATE.YEAR . 35

Y
YRMODA . 36

Chapter 17: Command Index 126

17 Command Index

*
* . 105

A
ADD DOCUMENT . 105
ADD VALUE LABELS . 70
AGGREGATE . 77
APPLY DICTIONARY . 58
AUTORECODE . 80

B
BEGIN DATA . 43
BINOMIAL . 99
BREAK . 89

C
CD . 105
CHISQUARE . 99
COMMENT . 105
COMPUTE . 80
COUNT . 80
CROSSTABS . 96

D
DATA LIST . 43
DATA LIST FIXED . 44
DATA LIST FREE . 46
DATA LIST LIST . 47
DELETE VARIABLES . 70
DESCRIPTIVES . 92
DISPLAY . 70
DISPLAY DOCUMENTS . 106
DISPLAY FILE LABEL . 106
DISPLAY VECTORS . 71
DO IF . 89
DO REPEAT . 89
DOCUMENT . 105
DROP DOCUMENTS . 106

E
ECHO . 106
END CASE . 47
END DATA . 43
END FILE . 48
ERASE . 106
EXAMINE . 95
EXECUTE . 106
EXPORT . 58

F
FILE HANDLE . 48
FILE LABEL . 106
FILTER . 85
FINISH . 107
FLIP . 82
FORMATS . 71
FREQUENCIES . 93

G
GET . 59
GET DATA . 60

H
HOST . 107

I
IF . 82
IMPORT . 65
INCLUDE . 107
INPUT PROGRAM . 50
INSERT . 107

L
LEAVE . 71
LIST . 53
LOOP . 90

M
MATCH FILES . 66
MISSING VALUES . 72
MODIFY VARS . 72

N
N OF CASES . 85
NEW FILE . 53
NPAR TESTS . 98
NUMERIC . 73

O
ONEWAY . 101

P
PERMISSIONS . 108
PRINT . 54
PRINT EJECT . 55

Chapter 17: Command Index 127

PRINT FORMATS . 73
PRINT SPACE . 55

R
RANK . 102
RECODE . 83
REGRESSION . 103
RENAME VARIABLES . 73
REPEATING DATA . 56
REREAD . 55

S
SAMPLE . 86
SAVE . 67
SELECT IF . 86
SET . 108
SHOW . 114
SORT CASES . 84
SPLIT FILE . 86
STRING . 74
SUBTITLE . 114
SYSFILE INFO . 68

T
T-TEST . 100
TEMPORARY . 87
TITLE . 115

V
VALUE LABELS . 74
VARIABLE ALIGNMENT . 74
VARIABLE LABELS . 74
VARIABLE LEVEL . 75
VARIABLE WIDTH . 75
VECTOR . 75

W
WEIGHT . 88
WRITE . 57
WRITE FORMATS . 76

X
XEXPORT . 69
XSAVE . 69

Chapter 18: Concept Index 128

18 Concept Index

"
‘"’ . 8

$
$CASENUM . 12
$DATE . 12
$JDATE . 12
$LENGTH . 12
$SYSMIS . 13
$TIME . 13
$WIDTH . 13

&
‘&’ . 26

’
‘’’ . 8

(
(. 27
‘()’ . 25

)
) . 27

*
‘*’ . 25
‘**’ . 26

+
‘+’ . 25

-
‘-’ . 25, 26

.
‘.’ . 11
. 24

/
‘/’ . 25

<
< . 26
<= . 26
<> . 26

=
‘=’ . 26

>
‘>’ . 26
>= . 26

‘_’ . 11

‘
“is defined as” . 24

|
‘|’ . 26

~
‘~’ . 26
~= . 26

0
0 . 8

A
absolute value . 27
active file . 23
addition . 25
analysis of variance . 101
AND . 26
ANOVA . 101
arccosine . 28
arcsine . 28
arctangent . 28
arguments, invalid . 33
arguments, minimum valid . 29
arguments, of date construction functions 33
arguments, of date extraction functions 34
arithmetic operators . 25
attributes of variables . 11

Chapter 18: Concept Index 129

B
Backus-Naur Form . 24
Batch syntax . 9
binary formats . 18
binomial test . 99
BNF . 24
Boolean . 25, 26

C
case conversion . 32
case-sensitivity . 7, 8
cases . 43
changing directory . 105
changing file permissions . 108
characters, reserved . 8
chi-square . 97
chisquare . 97
chisquare test . 99
coefficient of variation . 29
command file . 22
command line, options . 3
command syntax, description of 24
commands, ordering . 10
commands, structure . 8
commands, unimplemented 116
concatenation . 30
conditionals . 89
configuration . 133
constructing dates . 33
constructing times . 32
control flow . 89
convention, TO . 13
copyright . 2
cosine . 28
cross-case function . 36
currency formats . 16

D
data . 43
data file . 22
data files . 62
data, embedding in syntax files 43
Data, embedding in syntax files 43
data, fixed-format, reading . 44
data, reading from a file . 43
databases . 61
date examination . 34
date formats . 19
date, Julian . 36
dates . 32
dates, concepts . 32
dates, constructing . 33
dates, day of the month . 34
dates, day of the week . 35
dates, day of the year . 34
dates, day-month-year . 33

dates, in days . 34
dates, in hours . 34
dates, in minutes . 34
dates, in months . 34
dates, in quarters . 34
dates, in seconds . 34
dates, in weekdays . 35
dates, in weeks . 35
dates, in years . 35
dates, mathematical properties of 35
dates, month-year . 33
dates, quarter-year . 33
dates, time of day . 35
dates, valid . 32
dates, week-year . 33
dates, year-day . 34
day of the month . 34
day of the week . 35
day of the year . 34
day-month-year . 33
days . 32, 34
description of command syntax 24
deviation, standard . 30
dictionary . 11
directory . 105
division . 25

E
embedding data in syntax files 43
Embedding data in syntax files 43
embedding fixed-format data 44
EQ . 26
equality, testing . 26
examination, of times . 32
exponentiation . 26
expression . 24
expressions, mathematical . 25
extraction, of dates . 34
extraction, of time . 32

F
false . 26
FDL, GNU Free Documentation License 144
file definition commands . 9
file handles . 23
file mode . 108
file, active . 23
file, command . 22
file, data . 22
file, output . 22
file, portable . 23
file, scratch . 23
file, syntax file . 22
file, system . 23
files, PSPP . 1
fixed-format data, reading . 44

Chapter 18: Concept Index 130

flow of control . 89
formats . 13
Free Software Foundation . 1
function, cross-case . 36
functions . 27
functions, miscellaneous . 36
functions, missing-value . 28
functions, statistical . 29
functions, string . 30
functions, time & date . 32

G
GE . 26
Ghostscript . 1
Gnumeric . 60
graphics . 1
greater than . 26
greater than or equal to . 26
grouping operators . 25
GT . 26

H
headers . 113
hexadecimal formats . 18
hours . 33, 34
hours-minutes-seconds . 32

I
identifiers . 7
identifiers, reserved . 7
inequality, testing . 26
input . 43
input program commands . 9
integer . 24
integers . 7
Interactive syntax . 9
intersection, logical . 26
introduction . 1
inverse cosine . 28
inverse sine . 28
inverse tangent . 28
inversion, logical . 26
invocation . 3

J
Julian date . 36

K
keywords . 24

L
labels, value . 12

labels, variable . 12
language, command structure 8
language, lexical analysis . 7
language, PSPP . 1, 7
language, tokens . 7
LE . 26
length . 113
less than . 26
less than or equal to . 26
lexical analysis . 7
licence . 2
license . 2
linear regression . 103
listing . 113
logarithms . 27
logical intersection . 26
logical inversion . 26
logical operators . 26
logical union . 26
loops . 89
LT . 26

M
mathematical expressions . 25
mathematics . 27
mathematics, advanced . 27
mathematics, applied to times & dates 35
mathematics, miscellaneous . 27
maximum . 29
mean . 29
membership, of set . 29
memory, amount used to store cases 112
minimum . 29
minimum valid number of arguments 29
minutes . 33, 34
missing values . 11, 12, 28
mode . 108
modulus . 27
modulus, by 10 . 27
month-year . 33
months . 34
more . 113
multiplication . 25

N
names, of functions . 27
NE . 26
negation . 26
nonparametric tests . 98
nonterminals . 24
Normality, testing for . 95
NOT . 26
number . 24
numbers . 7
numbers, converting from strings 31
numbers, converting to strings 31

Chapter 18: Concept Index 131

numeric formats . 14

O
obligations, your . 2
observations . 43
operations, order of . 42
operator precedence . 42
operators . 8, 24, 27
operators, arithmetic . 25
operators, grouping . 25
operators, logical . 26
options, command-line . 3
OR . 26
order of commands . 10
order of operations . 42
output . 43
output file . 22
output, PSPP . 1

P
padding strings . 31
pager . 113
parentheses . 25, 27
percentiles . 94, 95
period . 11
portable file . 23
postgres . 61
PostScript . 1
precedence, operator . 42
print format . 12
procedures . 9
productions . 24
PSPP language . 1
PSPP, command structure . 8
PSPP, configuring . 133
PSPP, invoking . 3
PSPP, language . 7
punctuators . 8, 24

Q
quarter-year . 33
quarters . 34

R
reading data from a file . 43
reading fixed-format data . 44
reals . 7
regression . 103
reserved identifiers . 7
restricted transformations . 9
rights, your . 2
rounding . 27

S
scratch file . 23
scratch variables . 22
searching strings . 30
seconds . 33, 34
set membership . 29
sine . 28
spreadsheet files . 60
square roots . 27
standard deviation . 30
start symbol . 24
statistics . 29
string . 24
string formats . 22
string functions . 30
strings . 8
strings, case of . 30, 32
strings, concatenation of . 30
strings, converting from numbers 31
strings, converting to numbers 31
strings, finding length of . 30
strings, padding . 30, 31
strings, searching backwards 31
strings, taking substrings of . 31
strings, trimming . 30, 31
substrings . 31
subtraction . 25
sum . 30
symbol, start . 24
syntax file . 22
system file . 23
system variables . 12
system-missing . 26

T
tangent . 28
terminals . 24
terminals and nonterminals, differences 24
testing for equality . 26
testing for inequality . 26
text files . 62
time . 35
time examination . 32
time formats . 19
time, concepts . 32
time, in days . 32, 34
time, in hours . 33, 34
time, in hours-minutes-seconds 32
time, in minutes . 33, 34
time, in seconds . 33, 34
time, instants of . 32
time, intervals . 32
time, lengths of . 32
time, mathematical properties of 35
times . 32
times, constructing . 32
times, in days . 34

Chapter 18: Concept Index 132

TO convention . 13
tokens . 7
transformations . 9, 77
trigonometry . 28
true . 26
truncation . 27
type of variables . 11

U
unimplemented commands . 116
union, logical . 26
utility commands . 9

V
value label . 36
value labels . 12
values, Boolean . 25
values, missing . 11, 12, 28
values, system-missing . 26
var-list . 24
var-name . 24
variable labels . 12
variable names, ending with period 11

variables . 11
variables, attributes of . 11
variables, system . 12
variables, type . 11
variables, width . 11
variance . 30
variation, coefficient of . 29

W
week . 35
week-year . 33
weekday . 35
white space . 8
white space, trimming . 30, 31
width . 113
width of variables . 11
workspace . 112
write format . 12

Y
year-day . 34
years . 35
your rights and obligations . 2

Appendix A: Configuring PSPP 133

Appendix A Configuring PSPP

This chapter describe how to configure PSPP for your system.

A.1 Locating configuration files

PSPP searches each directory in the configuration file path for most configuration files.
The default configuration file path searches first ‘$HOME/.pspp’, then the package system
configuration directory (usually ‘/usr/local/etc/pspp’ or ‘/etc/pspp’). The value of
environment variable PSPP_CONFIG_PATH, if defined, overrides this default path. Finally,
‘-B path ’ or ‘--config-dir=path ’ specified on the command line has highest priority.

A.2 Configuration techniques

There are many ways that PSPP can be configured. These are described in the list below.
Values given by earlier items take precedence over those given by later items.
1. Syntax commands that modify settings, such as SET. See Section 13.17 [SET], page 108.
2. Command-line options. See Chapter 3 [Invocation], page 3.
3. PSPP-specific environment variable contents. See Section A.4 [Environment variables],

page 134.
4. General environment variable contents. See Section A.4 [Environment variables],

page 134.
5. Configuration file contents. See Section A.3 [Configuration files], page 133.
6. Fallback defaults.

Some of the above may not apply to a particular setting.

A.3 Configuration files

Most configuration files have a common form:
• Each line forms a separate command or directive. This means that lines cannot be

broken up, unless they are spliced together with a trailing backslash, as described
below.

• Before anything else is done, trailing white space is removed.
• When a line ends in a backslash (‘\’), the backslash is removed, and the next line is

read and appended to the current line.
− White space preceding the backslash is retained.
− This rule continues to be applied until the line read does not end in a backslash.
− It is an error if the last line in the file ends in a backslash.

• Comments are introduced by an octothorpe (‘#’), and continue until the end of the
line.
− An octothorpe inside balanced pairs of double quotation marks (‘"’) or single

quotation marks (‘’’) does not introduce a comment.
− The backslash character can be used inside balanced quotes of either type to escape

the following character as a literal character.
(This is distinct from the use of a backslash as a line-splicing character.)

Appendix A: Configuring PSPP 134

− Line splicing takes place before comment removal.
• Blank lines, and lines that contain only white space, are ignored.

A.4 Environment variables

You may think the concept of environment variables is a fairly simple one. However, the
author of PSPP has found a way to complicate even something so simple. Environment
variables are further described in the sections below:

A.4.1 Environment substitutions

Much of the power of environment variables lies in the way that they may be substituted
into configuration files. Variable substitutions are described below.

The line is scanned from left to right. In this scan, all characters other than dollar signs
(‘$’) are retained without change. Dollar signs introduce environment variable references.
References take three forms:

$var Replaced by the value of environment variable var. var must consist of either
one or more letters, or exactly one non-alphabetic character other than a left
brace (‘{’).

${var} Same as above, but var may contain any character (except ‘}’).

$$ Replaced by a single dollar sign.

Undefined variables expand to a empty value.

A.4.2 Predefined environment variables

There are two environment variables predefined for use in environment substitutions:

‘VER’ Defined as the version number of PSPP, as a string, in a format something like
‘0.9.4’.

‘ARCH’ Defined as the host architecture of PSPP, as a string, in standard
cpu-manufacturer-OS format. For instance, Debian GNU/Linux 1.1 on an
Intel machine defines this as ‘i586-unknown-linux’. This is somewhat
dependent on the system used to compile PSPP.

Nothing prevents these values from being overridden, although it’s a good idea not to
do so.

A.5 Output devices

Configuring output devices is the most complicated aspect of configuring PSPP. The output
device configuration file is named ‘devices’. It is searched for using the usual algorithm
for finding configuration files (see Section A.1 [File locations], page 133). Each line in the
file is read in the usual manner for configuration files (see Section A.3 [Configuration files],
page 133).

Lines in ‘devices’ are divided into three categories, described briefly in the table below:

driver category definitions
Define a driver in terms of other drivers.

Appendix A: Configuring PSPP 135

macro definitions
Define environment variables local to the output driver configuration file.

device definitions
Describe the configuration of an output device.

The following sections further elaborate the contents of the ‘devices’ file.

A.5.1 Driver categories

Drivers can be divided into categories. Drivers are specified by their names, or by the names
of the categories that they are contained in. Only certain drivers are enabled each time
PSPP is run; by default, these are the drivers in the category ‘default’. To enable a different
set of drivers, use the ‘-o device ’ command-line option (see Chapter 3 [Invocation], page 3).

Categories are specified with a line of the form ‘category=driver1 driver2 driver3

... drivern ’. This line specifies that the category category is composed of drivers named
driver1, driver2, and so on. There may be any number of drivers in the category, from zero
on up.

Categories may also be specified on the command line (see Chapter 3 [Invocation],
page 3).

This is all you need to know about categories. If you’re still curious, read on.

First of all, the term ‘categories’ is a bit of a misnomer. In fact, the internal representa-
tion is nothing like the hierarchy that the term seems to imply: a linear list is used to keep
track of the enabled drivers.

When PSPP first begins reading ‘devices’, this list contains the name of any drivers or
categories specified on the command line, or the single item ‘default’ if none were specified.

Each time a category definition is specified, the list is searched for an item with the
value of category. If a matching item is found, it is deleted. If there was a match, the list
of drivers (driver1 through drivern) is then appended to the list.

Each time a driver definition line is encountered, the list is searched. If the list contains
an item with that driver’s name, the driver is enabled and the item is deleted from the list.
Otherwise, the driver is not enabled.

It is an error if the list is not empty when the end of ‘devices’ is reached.

A.5.2 Macro definitions

Macro definitions take the form ‘define macroname definition ’. In such a macro defi-
nition, the environment variable macroname is defined to expand to the value definition.
Before the definition is made, however, any macros used in definition are expanded.

Please note the following nuances of macro usage:

• For the purposes of this section, macro and environment variable are synonyms.
• Macros may not take arguments.
• Macros may not recurse.
• Macros are just environment variable definitions like other environment variable defini-

tions, with the exception that they are limited in scope to the ‘devices’ configuration
file.

Appendix A: Configuring PSPP 136

• Macros override other all environment variables of the same name (within the scope of
‘devices’).

• Earlier macro definitions for a particular key override later ones. In particular, macro
definitions on the command line override those in the device definition file. See
Section 3.1 [Non-option Arguments], page 3.

• There are two predefined macros, whose values are determined at runtime:

‘viewwidth’
Defined as the width of the console screen, in columns of text.

‘viewlength’
Defined as the length of the console screen, in lines of text.

A.5.3 Driver definitions

Driver definitions are the ultimate purpose of the ‘devices’ configuration file. These are
where the real action is. Driver definitions tell PSPP where it should send its output.

Each driver definition line is divided into four fields. These fields are delimited by colons
(‘:’). Each line is subjected to environment variable interpolation before it is processed
further (see Section A.4.1 [Environment substitutions], page 134). From left to right, the
four fields are, in brief:

driver name
A unique identifier, used to determine whether to enable the driver.

class name
One of the predefined driver classes supported by PSPP. The currently sup-
ported driver classes include ‘postscript’ and ‘ascii’.

device type(s)
Zero or more of the following keywords, delimited by spaces:

screen

Indicates that the device is a screen display. This may reduce the
amount of buffering done by the driver, to make interactive use
more convenient.

printer

Indicates that the device is a printer.

listing

Indicates that the device is a listing file.

These options are just hints to PSPP and do not cause the output to be directed
to the screen, or to the printer, or to a listing file—those must be set elsewhere in
the options. They are used primarily to decide which devices should be enabled
at any given time. See Section 13.17 [SET], page 108, for more information.

options An optional set of options to pass to the driver itself. The exact format for the
options varies among drivers.

The driver is enabled if:

Appendix A: Configuring PSPP 137

1. Its driver name is specified on the command line, or
2. It’s in a category specified on the command line, or
3. If no categories or driver names are specified on the command line, it is in category

default.

For more information on driver names, see Section A.5.1 [Driver categories], page 135.
The class name must be one of those supported by PSPP. The classes supported depend

on the options with which PSPP was compiled. See later sections in this chapter for
descriptions of the available driver classes.

Options are dependent on the driver. See the driver descriptions for details.

A.5.4 Dimensions

Quite often in configuration it is necessary to specify a length or a size. PSPP uses a
common syntax for all such, calling them collectively by the name dimensions.
• You can specify dimensions in decimal form (‘12.5’) or as fractions, either as mixed

numbers (‘12-1/2’) or raw fractions (‘25/2’).
• A number of different units are available. These are suffixed to the numeric part of the

dimension. There must be no spaces between the number and the unit. The available
units are identical to those offered by the popular typesetting system TEX:

in inch (1 in = 2.54 cm)

" inch (1 in = 2.54 cm)

pt printer’s point (1 in = 72.27 pt)

pc pica (12 pt = 1 pc)

bp PostScript point (1 in = 72 bp)

cm centimeter

mm millimeter (10 mm = 1 cm)

dd didot point (1157 dd = 1238 pt)

cc cicero (1 cc = 12 dd)

sp scaled point (65536 sp = 1 pt)
• If no explicit unit is given, PSPP attempts to guess the best unit:

− Numbers less than 50 are assumed to be in inches.
− Numbers 50 or greater are assumed to be in millimeters.

A.5.5 How lines are divided into types

The lines in ‘devices’ are distinguished in the following manner:
1. Leading white space is removed.
2. If the resulting line begins with the exact string define, followed by one or more white

space characters, the line is processed as a macro definition.
3. Otherwise, the line is scanned for the first instance of a colon (‘:’) or an equals sign

(‘=’).

Appendix A: Configuring PSPP 138

4. If a colon is encountered first, the line is processed as a driver definition.

5. Otherwise, if an equals sign is encountered, the line is processed as a macro definition.

6. Otherwise, the line is ill-formed.

A.5.6 How lines are divided into tokens

Each driver definition line is run through a simple tokenizer. This tokenizer recognizes two
basic types of tokens.

The first type is an equals sign (‘=’). Equals signs are both delimiters between tokens
and tokens in themselves.

The second type is an identifier or string token. Identifiers and strings are equivalent after
tokenization, though they are written differently. An identifier is any string of characters
other than white space or equals sign.

A string is introduced by a single- or double-quote character (‘’’ or ‘"’) and, in general,
continues until the next occurrence of that same character. The following standard C
escapes can also be embedded within strings:

\’ A single-quote (‘’’).

\" A double-quote (‘"’).

\? A question mark (‘?’). Included for hysterical raisins.

\\ A backslash (‘\’).

\a Audio bell (ASCII 7).

\b Backspace (ASCII 8).

\f Formfeed (ASCII 12).

\n New-line (ASCII 10)

\r Carriage return (ASCII 13).

\t Tab (ASCII 9).

\v Vertical tab (ASCII 11).

\ooo Each ‘o’ must be an octal digit. The character is the one having the octal value
specified. Any number of octal digits is read and interpreted; only the lower 8
bits are used.

\xhh Each ‘h’ must be a hex digit. The character is the one having the hexadecimal
value specified. Any number of hex digits is read and interpreted; only the
lower 8 bits are used.

Tokens, outside of quoted strings, are delimited by white space or equals signs.

Appendix A: Configuring PSPP 139

A.6 The PostScript driver class

The postscript driver class is used to produce output that is acceptable to PostScript
printers and other interpreters.

The available options are listed below.

output-file=file-name
File to which output should be sent. This can be an ordinary file name (i.e.,
"pspp.ps"), a pipe (i.e., "|lpr"), or stdout ("-"). Default: "pspp.ps".

headers=boolean
Controls whether the standard headers showing the time and date and title and
subtitle are printed at the top of each page. Default: on.

paper-size=paper-size
Paper size. You may specify a name (e.g. a4, letter) or measurements (e.g.
210x297, 8.5x11in).
The default paper size is taken from the PAPERSIZE environment variable or the
file indicated by the PAPERCONF environment variable, if either variable is set.
If not, and your system supports the LC_PAPER locale category, then the default
paper size is taken from the locale. Otherwise, if ‘/etc/papersize’ exists, the
default paper size is read from it. As a last resort, A4 paper is assumed.

orientation=orientation
Either portrait or landscape. Default: portrait.

left-margin=dimension
right-margin=dimension
top-margin=dimension
bottom-margin=dimension

Sets the margins around the page. The headers, if enabled, are not included in
the margins; they are in addition to the margins. For a description of dimen-
sions, see Section A.5.4 [Dimensions], page 137. Default: 0.5in.

prop-font=afm-file[,font-file[,encoding-file]]
emph-font=afm-file[,font-file[,encoding-file]]
fixed-font=afm-file[,font-file[,encoding-file]]

Sets the font used for proportional, emphasized, or fixed-pitch text. The only
required value is afm-file, the AFM file for the font.
If specified, font-file will be downloaded to the printer at the beginning of the
print job. The font file may be in PFA or PFB format.
The font is reencoded as specified in encoding-file, if specified. Each line in
encoding-file should consist of a PostScript character name and a decimal en-
coding value (between 0 and 255), separated by white space. Blank lines and
comments introduced by ‘#’ are also allowed.
The files specified on these options are located as follows. If the file name begins
with ‘/’, then it is taken as an absolute path. Otherwise, PSPP searches its
configuration path for the specified name prefixed by psfonts/ (see Section A.1
[File locations], page 133).

Appendix A: Configuring PSPP 140

Default: proportional font Times-Roman.afm, emphasis font Times-
Italic.afm, fixed-pitch font Courier.afm.

font-size=font-size
Sets the size of the default fonts, in thousandths of a point. Default: 10000 (10
point).

line-gutter=dimension
Sets the width of white space on either side of lines that border text or graphics
objects. See Section A.5.4 [Dimensions], page 137. Default: 1pt.

line-spacing=dimension
Sets the spacing between the lines in a double line in a table. Default: 1pt.

line-width=dimension
Sets the width of the lines used in tables. Default: 0.5pt.

A.7 The ASCII driver class

The ASCII driver class produces output that can be displayed on a terminal or output to
printers. The ASCII driver has class name ‘ascii’.

The available options are listed below.

output-file=file-name
File to which output should be sent. This can be an ordinary file name (e.g.,
"pspp.txt"), a pipe (e.g., "|more"), or stdout ("-"). Default: "pspp.list".

chart-files=file-name-template
Template for the file names used for charts. The name should contain a single
‘#’, which is replaced by the chart number. Default: ‘"pspp-#.png"’.

chart-type=type.
Type of charts to output. Available types typically include ‘X’, ‘png’, ‘gif’,
‘svg’, ‘ps’, ‘cgm’, ‘fig’, ‘pcl’, ‘hpgl’, ‘regis’, ‘tek’, and ‘meta’. Default: ‘png’.
You may specify ‘none’ to disable chart output. Charts are also disabled if your
installation of PSPP was compiled without libplot.

paginate=boolean
If set, a formfeed will be written at the end of every page. Default: on.

tab-width=tab-width-value
The distance between tab stops for this device. If set to 0, tabs will not be used
in the output. Default: 8.

headers=boolean
If enabled, two lines of header information giving title and subtitle, page num-
ber, date and time, and PSPP version are printed at the top of every page.
These two lines are in addition to any top margin requested. Default: on.

length=line-count
Physical length of a page. Headers and margins are subtracted from this value.
You may specify the number of lines as a number, or for screen output you may
specify auto to track the height of the terminal as it changes. Default: 66.

Appendix A: Configuring PSPP 141

width=character-count
Physical width of a page. Margins are subtracted from this value. You may
specify the width as a number of characters, or for screen output you may
specify auto to track the width of the terminal as it changes. Default: 79.

top-margin=top-margin-lines
Length of the top margin, in lines. PSPP subtracts this value from the page
length. Default: 2.

bottom-margin=bottom-margin-lines
Length of the bottom margin, in lines. PSPP subtracts this value from the
page length. Default: 2.

box[line-type]=box-chars
The characters used for lines in tables produced by the ASCII driver can be
changed using this option. line-type is used to indicate which type of line to
change; box-chars is the character or string of characters to use for this type of
line.
line-type must be a 4-digit number. The digits are in the order ‘right’, ‘bottom’,
‘left’, ‘top’. The possibilities for each digit are:

0 No line.

1 Single line.

2 Double line.

Examples:

box[0101]="|"
Sets ‘|’ as the character to use for a single-width line with bottom
and top components.

box[2222]="#"
Sets ‘#’ as the character to use for the intersection of four double-
width lines, one each from the top, bottom, left and right.

box[1100]="\xda"
Sets ‘"\xda"’, which under MS-DOS is a box character suitable for
the top-left corner of a box, as the character for the intersection of
two single-width lines, one each from the right and bottom.

Defaults:
• box[0000]=" "

• box[1000]="-"
box[0010]="-"
box[1010]="-"

• box[0100]="|"
box[0001]="|"
box[0101]="|"

• box[2000]="="
box[0020]="="
box[2020]="="

Appendix A: Configuring PSPP 142

• box[3000]="="
box[0030]="="
box[3030]="="

• For all others, ‘+’ is used unless there are double lines or special lines, in
which case ‘#’ is used.

init=init-string
If set, this string is written at the beginning of each output file. It can be used
to initialize device features, e.g. to enable VT100 line-drawing characters.

emphasis=emphasis-style
How to emphasize text. Your choices are bold, underline, or none. Bold and
underline emphasis are achieved with overstriking, which may not be supported
by all the software to which you might pass the output.

A.8 The HTML driver class

The html driver class is used to produce output for viewing in tables-capable web browsers
such as Emacs’ w3-mode. Its configuration is very simple. Currently, the output has a very
plain format. In the future, further work may be done on improving the output appearance.

There are only a few options:

output-file=file-name
File to which output should be sent. This can be an ordinary file name (i.e.,
"pspp.ps"), a pipe (i.e., "|lpr"), or stdout ("-"). Default: ‘"pspp.html"’.

chart-files=file-name-template
Template for the file names used for charts, which are output in PNG format.
The name should contain a single ‘#’, which is replaced by the chart number.
Default: ‘"pspp-#.png"’.

A.9 Miscellaneous configuration

The following environment variables can be used to further configure PSPP:

HOME

Used to determine the user’s home directory. No default value.

STAT_INCLUDE_PATH
Path used to find include files in PSPP syntax files. Defaults vary across oper-
ating systems:

UNIX
• ‘.’
• ‘$HOME/.pspp/include’
• ‘/usr/local/lib/pspp/include’
• ‘/usr/lib/pspp/include’
• ‘/usr/local/share/pspp/include’
• ‘/usr/share/pspp/include’

Appendix A: Configuring PSPP 143

MS-DOS
• ‘.’
• ‘C:\PSPP\INCLUDE’
• ‘$PATH’

Other OSes
No default path.

TERM

The terminal type termcap or ncurses will use, if such support was compiled
into PSPP.

STAT_OUTPUT_INIT_FILE
The basename used to search for the driver definition file. See Section A.5
[Output devices], page 134. See Section A.1 [File locations], page 133. Default:
devices.

STAT_OUTPUT_INIT_PATH
The path used to search for the driver definition file. See Section A.1 [File
locations], page 133. Default: the standard configuration path.

TMPDIR

The directory in which PSPP stores its temporary files (used when sorting cases
or concatenating large numbers of cases). Default: (UNIX) ‘/tmp’, (MS-DOS)
‘\’, (other OSes) empty string.

TEMP

TMP

Under MS-DOS only, these variables are consulted after TMPDIR, in this order.

Appendix B: GNU Free Documentation License 144

Appendix B GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix B: GNU Free Documentation License 145

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix B: GNU Free Documentation License 146

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix B: GNU Free Documentation License 147

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix B: GNU Free Documentation License 148

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix B: GNU Free Documentation License 149

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 150

B.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Introduction
	Your rights and obligations
	Invoking PSPP
	Non-option Arguments
	Configuration Options
	Input and output options
	Language control options
	Informational options

	The PSPP language
	Tokens
	Forming commands of tokens
	Variants of syntax.
	Types of Commands
	Order of Commands
	Handling missing observations
	Variables
	Attributes of Variables
	Variables Automatically Defined by PSPP
	Lists of variable names
	Input and Output Formats
	Basic Numeric Formats
	Custom Currency Formats
	Legacy Numeric Formats
	Binary and Hexadecimal Numeric Formats
	Time and Date Formats
	Date Component Formats
	String Formats

	Scratch Variables

	Files Used by PSPP
	File Handles
	Backus-Naur Form

	Mathematical Expressions
	Boolean Values
	Missing Values in Expressions
	Grouping Operators
	Arithmetic Operators
	Logical Operators
	Relational Operators
	Functions
	Mathematical Functions
	Miscellaneous Mathematical Functions
	Trigonometric Functions
	Missing-Value Functions
	Set-Membership Functions
	Statistical Functions
	String Functions
	Time & Date Functions
	How times & dates are defined and represented
	Functions that Produce Times
	Functions that Examine Times
	Functions that Produce Dates
	Functions that Examine Dates
	Time and Date Arithmetic

	Miscellaneous Functions
	Statistical Distribution Functions
	Continuous Distributions
	Discrete Distributions

	Operator Precedence

	Data Input and Output
	BEGIN DATA
	CLOSE FILE HANDLE
	DATA LIST
	DATA LIST FIXED
	Examples

	DATA LIST FREE
	DATA LIST LIST

	END CASE
	END FILE
	FILE HANDLE
	INPUT PROGRAM
	LIST
	NEW FILE
	PRINT
	PRINT EJECT
	PRINT SPACE
	REREAD
	REPEATING DATA
	WRITE

	System Files and Portable Files
	APPLY DICTIONARY
	EXPORT
	GET
	GET DATA
	Gnumeric Spreadsheet Files
	Postgres Database Queries
	Textual Data Files
	Reading Delimited Data
	Reading Fixed Columnar Data

	IMPORT
	MATCH FILES
	SAVE
	SYSFILE INFO
	XEXPORT
	XSAVE

	Manipulating variables
	ADD VALUE LABELS
	DELETE VARIABLES
	DISPLAY
	DISPLAY VECTORS
	FORMATS
	LEAVE
	MISSING VALUES
	MODIFY VARS
	NUMERIC
	PRINT FORMATS
	RENAME VARIABLES
	VALUE LABELS
	STRING
	VARIABLE LABELS
	VARIABLE ALIGNMENT
	VARIABLE WIDTH
	VARIABLE LEVEL
	VECTOR
	WRITE FORMATS

	Data transformations
	AGGREGATE
	AUTORECODE
	COMPUTE
	COUNT
	FLIP
	IF
	RECODE
	SORT CASES

	Selecting data for analysis
	FILTER
	N OF CASES
	SAMPLE
	SELECT IF
	SPLIT FILE
	TEMPORARY
	WEIGHT

	Conditional and Looping Constructs
	BREAK
	DO IF
	DO REPEAT
	LOOP

	Statistics
	DESCRIPTIVES
	FREQUENCIES
	EXAMINE
	CROSSTABS
	NPAR TESTS
	Binomial test
	Chisquare test

	T-TEST
	One Sample Mode
	Independent Samples Mode
	Paired Samples Mode

	ONEWAY
	RANK
	REGRESSION
	Syntax
	Examples

	Utilities
	ADD DOCUMENT
	CD
	COMMENT
	DOCUMENT
	DISPLAY DOCUMENTS
	DISPLAY FILE LABEL
	DROP DOCUMENTS
	ECHO
	ERASE
	EXECUTE
	FILE LABEL
	FINISH
	HOST
	INCLUDE
	INSERT
	PERMISSIONS
	SET
	SHOW
	SUBTITLE
	TITLE

	Not Implemented
	Bugs
	Function Index
	Command Index
	Concept Index
	Configuring PSPP
	Locating configuration files
	Configuration techniques
	Configuration files
	Environment variables
	Environment substitutions
	Predefined environment variables

	Output devices
	Driver categories
	Macro definitions
	Driver definitions
	Dimensions
	How lines are divided into types
	How lines are divided into tokens

	The PostScript driver class
	The ASCII driver class
	The HTML driver class
	Miscellaneous configuration

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

