
sqlite3 driver manual

A libdbi driver using the SQLite3
embedded database engine

Markus Hoenicka
mhoenicka@users.sourceforge.net



sqlite3 driver manual: A libdbi driver using the SQLite3 embedded database
engine
by Markus Hoenicka

Revision History

Revision $Revision: 1.5 $ $Date: 2005/09/06 06:28:46 $



Table of Contents
Preface .............................................................................................................................i

1. Introduction................................................................................................................ 1

2. Installation.................................................................................................................. 2

2.1. Prerequisites ..................................................................................................... 2

2.2. Build and install the sqlite3 driver ................................................................... 2

3. Driver options ............................................................................................................. 4

4. Peculiarities you should know about .......................................................................... 5

4.1. SQLite3 (mis)features....................................................................................... 5

4.2. sqlite driver misfeatures.................................................................................... 8

iii



List of Tables
4-1. SQL column types supported by the sqlite driver ................................................... 5

iv



Preface
libdbi (http://libdbi.sourceforge.net) is a database abstraction layer written in C. It

implements a framework that can utilize separate driver libraries for speci�c database

servers. The libdbi-drivers (http://libdbi-drivers.sourceforge.net) project provides the

drivers necessary to talk to the supported database servers.

This manual provides information about the sqlite3 driver. The manual is intended for

programmers who write applications linked against libdbi and who want their applica-

tions to work with the sqlite3 driver.

Questions and comments about the sqlite3 driver should be sent to the

libdbi-drivers-devel (mailto:libdbi-drivers-devel@lists.sourceforge.net) mailing list. Visit

the libdbi-drivers-devel list page (http://lists.sourceforge.net/lists/listinfo/libdbi-

drivers-devel) to subscribe and for further information. Questions and comments about

the libdbi library should be sent to the appropriate libdbi mailing list.

The sqlite3 driver is maintained by Markus Hoenicka

(mailto:mhoenicka@users.sourceforge.net).

i



Chapter 1. Introduction
SQLite (http://www.sqlite.org) is a smart library that implements an embeddable SQL

database engine. No need for an external database server - an application linked against

libsqlite can do it all by itself. Of course there are a few limitations of this approach

compared to "real" SQL database servers, mostly for massively parallel high-throughput

database applications, but on the other hand, installation and administration are a breeze.

SQLite3 is a redesign of SQLite which is incompatible with the older 2.x versions. As

the API functions and the library itself were renamed, SQLite3 also requires a slightly

modi�ed libdbi driver. You can have both the sqlite and the sqlite3 driver installed on

your system, but you have to make sure that you access your databases with the driver

that matches the database version. The easiest way to accomplish this is to use di�erent

database directories for each version.

Your application should support the sqlite3 driver if one of the following applies:

� You want to support potential users of your application who don't have the skills to

administer a database server.

� You want to o�er the simplest possible installation of your application.

� You want to let users test-drive your application without the need to �ddle with their

production database servers.

1



Chapter 2. Installation
This chapter describes the prerequisites and the procedures to build and install the sqlite3

driver from the sources.

2.1. Prerequisites
The following packages have to be installed on your system:

libdbi

This library provides the framework of the database abstraction layer which can

utilize the sqlite3 driver to perform database operations. The download page as

well as the mailing lists with bug reports and patches are accessible at source-

forge.net/projects/libdbi (http://sourceforge.net/projects/libdbi).

sqlite3

This library implements the embedded database engine. Find the most recent release

at www.sqlite.org (http://www.sqlite.org). The current version of the sqlite driver

was tested with SQLite3 version 3.0.8 and should work ok with later releases.

2.2. Build and install the sqlite3 driver
First you have to unpack the libdbi-drivers archive in a suitable directory. Unpacking

will create a new subdirectory libdbi-drivers-X.Y where "X.Y" denotes the version:

$ tar -xzf libdbi-drivers-0.7.2.tar.gz

The libdbi-drivers project consists of several drivers that use a common build system.

Therefore you must tell con�gure explicitly that you want to build the sqlite3 driver (you

can list as many drivers as you want to build):

$ cd libdbi-drivers

$ ./configure --with-sqlite3

Run ./con�gure --help to �nd out about additional options.

2



Chapter 2. Installation

Then build the driver with the command:

$ make

Note: Please note that you may have to invoke gmake , the GNU version of make, on
some systems.

Then install the driver with the command (you'll need root permissions to do this):

$ make install

To test the operation of the newly installed driver, use the command:

$ make check

This command creates and runs a test program that performs a few basic input and

output tests. The program will ask for a database name. This can be any name that is a

valid �lename on your system. It will also ask for a data directory. This is the directory

that is used to create the test database. Needless to say that you need write access to

that directory. If you accept the default ".", the database will be created in the tests

subdirectory.

Note: If for some reason you need to re-create the autoconf/automake-related files, try
running ./autogen.sh . I’ve found out that the current stable autoconf/automake/libtool
versions (as found in FreeBSD 4.7 and Debian 3.0) do not cooperate well, so I found it
necessary to run the older autoconf 2.13. If necessary, edit autogen.sh so that it will
catch the older autoconf version on your system.

3



Chapter 3. Driver options
Your application has to initialize libdbi drivers by setting some driver options with

the dbi_conn_set_option() and the dbi_conn_set_option_numeric() library func-

tions. The sqlite driver supports the following options:

dbname

The name of the database you want to work with. As a SQLite database corresponds

to one �le in your �lesystem, dbname can be any legal �lename. If the database/�le

doesn't exist when you �rst try to access it, SQLite will create it on the �y.

It is important to understand that the full path of the database is composed of

sqlite3_dbdir and dbname. Therefore dbname should not contain the full path of

a �le, but just the name.

sqlite3_dbdir

This is the directory that contains all sqlite databases. Use the full path please.

Note: It is necessary to keep all sqlite databases in one directory to make it pos-
sible to list all existing databases through the libdbi API. However, you are free to
open more than one connection simultaneously, each one using a different setting
of sqlite3_dbdir .

sqlite3_timeout

The design of SQLite3 does not allow fully concurrent access by two clients. However,

if the timeout is larger than zero, the second client will wait for the given amount of

time for the �rst client to release its lock, if necessary. If the timeout is set to zero,

the second client will return immediately, indicating a busy status. The numerical

value of this option speci�es the timeout in milliseconds.

4



Chapter 4. Peculiarities you should
know about
This chapter lists known peculiarities of the sqlite3 driver. This includes SQLite3 features

that di�er from what you know from the other database servers supported by libdbi, and

it includes features and misfeatures introduced by the sqlite3 driver. It is the intention

of the driver author to reduce the number of misfeatures in future releases if possible.

4.1. SQLite3 (mis)features
As the SQLite3 package is constantly being improved, you should refer to the original

documentation about the SQL features it supports (http://www.sqlite.org/lang.html)

and about the SQL features it doesn't support (http://www.sqlite.org/omitted.html).

One noticeable di�erence between SQLite3 and other SQL database engines is that the

former uses something called "manifest typing". The practical di�erence to the typeless

nature of SQLite 2.x is negligible as it still does not support the rich typing used by most

other SQL database engines. In order to satisfy the needs of the strongly typed retrieval

functions of libdbi, the only way out is to declare the column types in a CREATE TABLE

statement just as you would with any other SQL database engine. As an example, the

following statement is perfectly �ne with SQLite3, but not with the sqlite3 driver:

CREATE TABLE foo (a,b,c)

However, the following statement is �ne with SQLite3, the sqlite3 driver, and just about

any other SQL database engine out there:

CREATE TABLE foo (a INTEGER,b TEXT,c VARCHAR(64))

The following table lists the column types which are positively recognized by the sqlite

driver. Essentially all column types supported by MySQL and PostgreSQL are supported

by this driver as well, making it reasonably easy to write portable SQL code. All other

column types are treated as strings.

Table 4-1. SQL column types supported by the sqlite driver

type description

5



Chapter 4. Peculiarities you should know about

type description
TINYBLOB, BLOB, MEDIUMBLOB,

LONGBLOB, BYTEA

String types of unlimited length. Binary

data must be safely encoded, see text.

CHAR(), VARCHAR(), TINYTEXT,

TEXT, MEDIUMTEXT, LONGTEXT

String types of unlimited length. There is

no chopping or padding performed by the

database engine.

ENUM String type of unlimited length. In contrast

to MySQL, choosing ENUM over

VARCHAR does not save any storage

space.

SET String type of unlimited length. In contrast

to MySQL, the input is not checked

against the list of allowed values.

YEAR String type of unlimited length. MySQL

stores 2 or 4 digit years as a 1 byte value,

whereas the SQLite drivers stores the

string as provided.

TINYINT, INT1, CHAR A 1 byte type used to store one character,

a signed integer between -128 and 127, or

an unsigned integer between 0 and 255.

SMALLINT, INT2 2 byte (short) integer type used to store a

signed integer between -32768 and 32767 or

an unsigned integer between 0 and 65535.

MEDIUMINT 3 byte integer type used to store a signed

integer between -8388608 and 8388607 or

an unsigned integer between 0 and

16777215.

INT, INTEGER, INT4 4 byte (long) integer type used to store a

signed integer between -2147483648 and

2147483647 or an unsigned integer between

0 and 4294967295.

6



Chapter 4. Peculiarities you should know about

type description
BIGINT, INT8, INTEGER PRIMARY

KEY

8 byte (long long) integer type used to

store a signed integer between

-9223372036854775808 and

9223372036854775807 or an unsigned

integer between 0 and

18446744073709551615. See below for a

discussion of INTEGER PRIMARY KEY.

DECIMAL, NUMERIC A string type of unlimited length used to

store �oating-point numbers of arbitrary

precision.

TIMESTAMP, DATETIME A string type of unlimited length used to

store date/time combinations. The

required format is 'YYYY-MM-DD

HH:MM:SS', anything following this

pattern is ignored.

DATE A string type of unlimited length used to

store a date. The required format is

'YYYY-MM-DD', anything following this

pattern is ignored.

TIME A string type of unlimited length used to

store a time. The required format is

'HH:MM:SS', anything following this

pattern is ignored.

FLOAT, FLOAT4, REAL A 4 byte �oating-point number. The range

is -3.402823466E+38 to -1.175494351E-38,

0, and 1.175494351E-38 to

3.402823466E+38. Please note that

MySQL treats REAL as an 8 byte instead

of a 4 byte �oat like PostgreSQL.

DOUBLE, DOUBLE PRECISION,

FLOAT8

An 8 byte �oating-point number. The

range is -1.7976931348623157E+308 to

-2.2250738585072014E-308, 0, and

2.2250738585072014E-308 to

1.7976931348623157E+308.

Another di�erence is the lack of access control on the database engine level. Most SQL

7



Chapter 4. Peculiarities you should know about

database servers implement some mechanisms to restrict who is allowed to �ddle with

the databases and who is not. As SQLite3 uses regular �les to store its databases, all

available access control is on the �lesystem level. There is no SQL interface to this kind

of access control, but chmod and chown are your friends.

4.2. sqlite driver misfeatures
And now we have to discuss how successful the sqlite driver is in squeezing the SQLite

idea of a database engine into the libdbi framework which was shaped after MySQL and

PostgreSQL. Keep in mind that the limitations mentioned here are not intrinsic (except

maybe the �rst one which is beyond our control), that is a su�cient amount of coding

might �x these problems eventually.

� SQLite3 handles auto-increment columns in a fairly non-intuitive way. Only the type

INTEGER PRIMARY KEY auto-increments. As a user of other database engine you

might expect the row IDs to be 4-byte integers (they were in 2.x), but nope: they are

in fact 8-byte integers, and therefore equivalent to INT8 or BIGINT of other engines.

This leaves us with the odd "feature" of the sqlite3 driver that INTEGER is a 4-byte

integer, whereas INTEGER PRIMARY KEY is a 8-bit integer type. If this were not

the case, auto-incrementing columns would be arti�cially limited to the range of 4-byte

integers. On the other hand this means that you cannot declare a real 4-byte integer

auto-incrementing column.

Warning
Do not forget to use dbi_result_get_longlong() or
dbi_result_get_ulonglong to retrieve values from columns declared as
INTEGER PRIMARY KEY.

� The (essentially) typeless nature of SQLite has some nasty consequences. The sqlite

driver takes great care to reconstruct the type of a �eld that you request in a query,

but this isn't always successful. Some of the functions that SQLite supports work both

on numeric and text data. The sqlite driver currently cannot deduce the �eld type

correctly as it would have to check all arguments of each function. Instead the sqlite

8



Chapter 4. Peculiarities you should know about

driver makes a few assumptions that may be right or wrong in a given case. The

a�ected functions are coalesce(X,Y,...) , max(X) , min(X) , and count(X) .

� The sqlite driver currently assumes that the directory separator of your �lesystem

is a slash (/). This may be wrong on your particular system. It is not a problem

for Windows systems as long as the sqlite driver is built with the Cygwin tools (see

README.win32).

� Listing tables with the dbi_conn_get_table_list() libdbi function currently re-

turns only permanent tables. Temporary tables are ignored.

� The sqlite driver assumes that table and �eld names do not exceed 128 characters

in length, including the trailing \0. I don't know whether SQLite internally has such

a limit or not (both MySQL and PostgreSQL have a lower limit). The limit can be

increased by changing a single #de�ne in the dbd_sqlite.h header �le.

� In a few cases, the sqlite driver expects you to type SQL keywords in all lowercase or

all uppercase, but not mixed. This holds true for the 'from' in a SELECT statement.

Type it either as 'from' or as 'FROM', but refrain from using 'fRoM' or other funny

mixtures of uppercase and lowercase. Most other database engines treat the keywords

as case-insensitive and would accept all variants.

9


	sqlite3 driver manual
	Table of Contents
	List of Tables
	Preface
	Chapter 1. Introduction
	Chapter 2. Installation
	2.1. Prerequisites
	2.2. Build and install the sqlite3 driver

	Chapter 3. Driver options
	Chapter 4. Peculiarities you should know about
	4.1. SQLite3 (mis)features
	4.2. sqlite driver misfeatures


