LI HTS(R)-PUBLIC W ite - LIGGGHTS(R)-PUBLIC Documentation - LI HTS(R)-PUBLI

Commands

LIGGGHTS(R)-PUBLIC Documentation, Version 3.X

CEDEM' CEDER

COLPEIMNG PREVECT

LIGGGHTS(R)-PUBLIC DEM simulation engine

released by DCS Computing Gmbh, Linz, Austria,
www.dcs-computing.com , office@dcs-computing.com

LIGGGHTS(R)-PUBLIC is open-source, distributed under the terms of the GNU Public
License, version 2 or later. LIGGGHTS(R)-PUBLIC is part of CFDEM(R)project:
www.liggghts.com | www.cfdem.com

Core developer and main author: Christoph Kloss, christoph.kloss @dcs-computing.com

LIGGGHTS(R)-PUBLIC is an Open Source Discrete Element Method Particle Simulation
Software, distributed by DCS Computing GmbH, Linz, Austria. LIGGGHTS (R) and CFDEM(R)
are registered trade marks of DCS Computing GmbH, the producer of the LIGGGHTS (R)
software and the CFDEM(R)coupling software See
http://www.cfdem.com/terms-trademark-policy for details.

http://www.cfdem.com
http://www.dcs-computing.com
http://www.liggghts.com
http://www.cfdem.com

LIGGGHTS (R) Version info:

All LIGGGHTS (R) versions are based on a specific version of LIGGGHTS (R), as printed in the file
src/version.h LIGGGHTS (R) versions are identidied by a version number (e.g. '3.0"), a branch name (which is
"LIGGGHTS(R)-PUBLIC' for your release of LIGGGHTS), compilation info (date / time stamp and user
name), and a LAMMPS version number (which is the LAMMPS version that the LIGGGHTS(R)-PUBLIC
release is based on). The LAMMPS "version" is the date when it was released, such as 1 May 2010.

If you browse the HTML doc pages on the LIGGGHTS(R)-PUBLIC WWW site, they always describe the
most current version of LIGGGHTS(R)-PUBLIC. If you browse the HTML doc pages included in your
tarball, they describe the version you have.

LIGGGHTS (R) and its ancestor LAMMPS:

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public
License (GPL). The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul
Crozier. The LAMMPS WWW Site at http://lammps.sandia.gov has more information about LAMMPS.

The LIGGGHTS(R)-PUBLIC documentation is organized into the following sections. If you find errors or
omissions in this manual or have suggestions for useful information to add, please send an email to the
developers so we can improve the LIGGGHTS(R)-PUBLIC documentation.

Once you are familiar with LIGGGHTS(R)-PUBLIC, you may want to bookmark this page since it gives
quick access to documentation for all LIGGGHTS(R)-PUBLIC commands.

1. Introduction
1.1 What is LIGGGHTS(R)-PUBLIC
1.2 LIGGGHTS(R)-PUBLIC features
1.3 Open source distribution
1.4 Acknowledgments and citations
2. Getting started
2.1 What's in the LIGGGHTS(R)-PUBLIC distribution
2.2 Making LIGGGHTS(R)-PUBLIC
2.3 Making LIGGGHTS(R)-PUBLIC with optional packages
2.4 Building LIGGGHTS(R)-PUBLIC via the Make.py script
2.5 Building LIGGGHTS(R)-PUBLIC as a library
2.6 Running LIGGGHTS(R)-PUBLIC
2.7 Command-line options
2.8 Screen output
3. Input script
3.1 LIGGGHTS(R)-PUBLIC input script
3.2 Parsing rules

3.3 Input script structure
4. Commands 4.1 List of available commands

5. Contact models 5.1 List of available contact models

6. Packages
6.1 Standard packages
6.2 User packages

7. How-to discussions

7.1 Restarting a simulation
7.2 2d simulations

7.3 Running multiple simulations from one input script
7.4 Granular models

7.5 Coupling LIGGGHTS(R)-PUBLIC to other codes
7.6 Visualizing LIGGGHTS(R)-PUBLIC snapshots
7.7 Triclinic (non-orthogonal) simulation boxes

7.8 Output from LIGGGHTS(R)-PUBLIC (thermo. dumps. computes. fixes. variables)
7.9 Walls
7.10 Library interface to LIGGGHTS(R)-PUBLIC
8. Modifying & extending IL.IGGGHTS(R)-PUBLIC
8.1 Atom styles
8.2 Compute styles
8.4 Dump styles
8.5 Dump custom output options
8.6 Fix styles
8.6 Input script commands
8.7 Pairwise potentials
8.8 Region styles
8.9 Thermodynamic output options
8.10 Variable options
8.11 Submitting new features for inclusion in LIGGGHTS(R)-PUBLIC
9. Python interface
9.1 Building LIGGGHTS(R)-PUBLIC as a shared library
9.2 Installing the Python wrapper into Python
9.3 Extending Python with MPI to run in parallel
4 Testing the Python-LI HTS(R)-PUBLIC interface
9.5 Using LIGGGHTS(R)-PUBLIC from Python
9.6 Example Python scripts that use LIGGGHTS(R)-PUBLIC
10. Errors
10.1 Common problems
10.2 Reporting bugs
10.3 Error & warning messages

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

atom_modify command

Syntax:
atom_modify keyword wvalues ...

¢ one or more keyword/value pairs may be appended
¢ keyword = map or first or sort

map value = array or hash
first value = group-ID = group whose atoms will appear first in internal atom lists
sort values = Nfreqg binsize
Nfreg = sort atoms spatially every this many time steps
binsize = bin size for spatial sorting (distance units)

Examples:

atom_modify map hash
atom_modify map array sort 10000 2.0
atom_modify first colloid

Description:
Modify properties of the atom style selected within LIGGGHTS(R)-PUBLIC.

The map keyword determines how atom ID lookup is done for molecular problems. Lookups are performed
by bond (angle, etc) routines in LIGGGHTS(R)-PUBLIC to find the local atom index associated with a global
atom ID. When the array value is used, each processor stores a lookup table of length N, where N is the total
of atoms in the system. This is the fastest method for most simulations, but a processor can run out of
memory to store the table for very large simulations. The hash value uses a hash table to perform the lookups.
This method can be slightly slower than the array method, but its memory cost is proportional to N/P on each
processor, where P is the total number of processors running the simulation.

The first keyword allows a group to be specified whose atoms will be maintained as the first atoms in each
processor's list of owned atoms. This in only useful when the specified group is a small fraction of all the
atoms, and there are other operations LIGGGHTS(R)-PUBLIC is performing that will be sped-up
significantly by being able to loop over the smaller set of atoms. Otherwise the reordering required by this
option will be a net slow-down. The neigh modify include and communicate group commands are two
examples of commands that require this setting to work efficiently. Several fixes, most notably time
integration fixes like fix nve, also take advantage of this setting if the group they operate on is the group
specified by this command. Note that specifying "all" as the group-ID effectively turns off the first option.

It is OK to use the first keyword with a group that has not yet been defined, e.g. to use the atom_modify first
command at the beginning of your input script. LIGGGHTS(R)-PUBLIC does not use the group until a
simullation is run.

The sort keyword turns on a spatial sorting or reordering of atoms within each processor's sub-domain every
Nfreq timesteps. If Nfreq is set to O, then sorting is turned off. Sorting can improve cache performance and
thus speed-up a LIGGGHTS(R)-PUBLIC simulation, as discussed in a paper by (Meloni). Its efficacy
depends on the problem size (atoms/processor), how quickly the system becomes disordered, and various
other factors. As a general rule, sorting is typically more effective at speeding up simulations of liquids as
opposed to solids. In tests we have done, the speed-up can range from zero to 3-4x.

atom_modify command 1

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Reordering is peformed every Nfreq timesteps during a dynamics run or iterations during a minimization.
More precisely, reordering occurs at the first reneighboring that occurs after the target timestep. The
reordering is performed locally by each processor, using bins of the specified binsize. If binsize is set to 0.0,
then a binsize equal to half the neighbor cutoff distance (force cutoff plus skin distance) is used, which is a
reasonable value. After the atoms have been binned, they are reordered so that atoms in the same bin are
adjacent to each other in the processor's 1d list of atoms.

The goal of this procedure is for atoms to put atoms close to each other in the processor's one-dimensional list
of atoms that are also near to each other spatially. This can improve cache performance when pairwise
interactions and neighbor lists are computed. Note that if bins are too small, there will be few atoms/bin.
Likewise if bins are too large, there will be many atoms/bin. In both cases, the goal of cache locality will be
undermined.

IMPORTANT NOTE: Running a simulation with sorting on versus off should not change the simulation
results in a statistical sense. However, a different ordering will induce round-off differences, which will lead
to diverging trajectories over time when comparing two simulations. Various commands, particularly those
which use random numbers, may generate (statistically identical) results which depend on the order in which
atoms are processed. The order of atoms in a dump file will also typically change if sorting is enabled.

Restrictions:

The map keyword can only be used before the simulation box is defined by a read data or create box
command.

The first and sort options cannot be used together. Since sorting is on by default, it will be turned off if the
first keyword is used with a group-ID that is not "all".

Related commands: none
Default:
By default, non-molecular problems do not allocate maps. For molecular problems, the option default is map

= array. By default, a "first" group is not defined. By default, sorting is enabled with a frequency of 1000 and
a binsize of 0.0, which means the neighbor cutoff will be used to set the bin size.

(Meloni) Meloni, Rosati and Colombo, J Chem Phys, 126, 121102 (2007).

atom_modify command 2

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

atom_style command

Syntax:
atom_style style args

¢ style = bond or charge or ellipsoid or full or line or molecularor sphere or granular or bond/gran or
tri or hybrid or sph

args = none for any style except body and hybrid
body args = bstyle bstyle-args
bstyle = style of body particles
bstyle-args = additional arguments specific to the bstyle
see the body doc page for details
hybrid args = list of one or more sub-styles, each with their args

Examples:

atom_style bond
atom_style sphere
atom_style hybrid sphere bond

Description:

Define what style of atoms to use in a simulation. This determines what attributes are associated with the
atoms. This command must be used before a simulation is setup via a read data, read restart, or create box
command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. E.g.
with style bond, angular terms cannot be used or added later to the model. It is OK to use a style more general
than needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated
between processors to enable forces to be computed, and what quantities are listed in the data file read by the
read data command.

These are the additional attributes of each style and the typical kinds of physical systems they are used to
model. All styles store coordinates, velocities, atom IDs and types. See the read data, create atoms, and set
commands for info on how to set these various quantities.

bond bonds bead-spring polymers
bond/gran number of bonds and bond information [granular bond models
charge charge atomic system with charges
ellipsoid shape, quaternion, angular momentum |aspherical particles

line end points, angular velocity rigid bodies

sph q(pressure), density SPH particles

molecular bonds, angles, dihedrals, impropers uncharged molecules
sphere or granular |diameter, mass, angular velocity granular models

tri corner points, angular momentum rigid bodies AWPMD

IMPORTANT NOTE: It is possible to add some attributes, such as a molecule ID, to atom styles that do not
have them via the fix property/atom command. This command also allows new custom attributes consisting of

atom_style command 3

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

extra integer or floating-point values to be added to atoms. See the fix property/atom doc page for examples of
cases where this is useful and details on how to initialize, access, and output the custom values.

All of the styles assign mass to particles on a per-type basis, using the mass command, except for sphere or
granular styles. They assign mass to individual particles on a per-particle basis.

For the sphere style, the particles are spheres and each stores a per-particle diameter and mass. If the diameter
> (.0, the particle is a finite-size sphere. If the diameter = 0.0, it is a point particle. This is typically used for
granular models. Instead of sphere, keyword granular can be used.

For the bond/gran style, the number of granular bonds per atom is stored, and the information associated to it:
the type of each bond, the ID of the bonded partner atom and the so-called bond history. The bond history is
similar to the contact history for granular interaction, it stores the internal state of the bond. What exactly is
stored in this internal state is defined by the granular bond style used. There are 2 parameters: The number of
bond types, and the maximum number of bonds that each atom can have. For each bond type, the parameters
have to be specified via the bond coeff command (see example here) Note that bond/gran is an experimental
code which is may not be available in your release of LIGGGHTS. An example for the sytnax is given below:

atom_style bond/gran n_bondtypes 1 bonds_per_atom 6

For the ellipsoid style, the particles are ellipsoids and each stores a flag which indicates whether it is a
finite-size ellipsoid or a point particle. If it is an ellipsoid, it also stores a shape vector with the 3 diamters of
the ellipsoid and a quaternion 4-vector with its orientation.

For the line style, the particles are idealized line segments and each stores a per-particle mass and length and
orientation (i.e. the end points of the line segment).

For the tri style, the particles are planar triangles and each stores a per-particle mass and size and orientation
(i.e. the corner points of the triangle).

Typically, simulations require only a single (non-hybrid) atom style. If some atoms in the simulation do not
have all the properties defined by a particular style, use the simplest style that defines all the needed properties
by any atom. For example, if some atoms in a simulation are charged, but others are not, use the charge style.
If some atoms have bonds, but others do not, use the bond style.

The only scenario where the hybrid style is needed is if there is no single style which defines all needed
properties of all atoms. For example, if you want dipolar particles which will rotate due to torque, you would
need to use "atom_style hybrid sphere dipole". When a hybrid style is used, atoms store and communicate the
union of all quantities implied by the individual styles.

LIGGGHTS(R)-PUBLIC can be extended with new atom styles as well as new body styles; see this section.
Restrictions:

This command cannot be used after the simulation box is defined by a read data or create _box command.

The bond, molecular styles are part of the MOLECULAR package. The /ine and tri styles are part of the
ASPHERE package. They are only enabled if LIGGGHTS(R)-PUBLIC was built with that package. See the

Making LIGGGHTS(R)-PUBLIC section for more info.

Related commands:
read data, pair_style

Default: none

atom_style command 4

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_coeff command

Syntax:
bond_coeff N args

¢ N = bond type (see asterisk form below)
¢ args = coefficients for one or more bond types

Examples:

bond_coeff 5 80.0 1.2

bond_coeff * 30.0 1.5 1
bond_coeff 1*4 30.0 1.5
bond_coeff 1 harmonic 2

0 1.
1.0
0.0

=)

.0
0 .0

Description:

Specify the bond force field coefficients for one or more bond types. The number and meaning of the
coefficients depends on the bond style. Bond coefficients can also be set in the data file read by the read data
command or in a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or
a wild-card asterisk can be used to set the coefficients for multiple bond types. This takes the form "*" or "*n"
or "n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a bond_coeff command can override a previous setting for the same bond type. For example,
these commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the
bond_coeff command in an input script, except that wild-card asterisks should not be used since coefficients
for all N types must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line
that corresponds to the 1st example above would be listed as

5 80.0 1.2

Here is an alphabetic list of bond styles defined in LIGGGHTS(R)-PUBLIC. Click on the style to display the
formula it computes and coefficients specified by the associated bond coeff command.

Note that here are also additional bond styles submitted by users which are included in the
LIGGGHTS(R)-PUBLIC distribution. The list of these with links to the individual styles are given in the bond
section of this page.

¢ bond style none - turn off bonded interactions
¢ bond style hybrid - define multiple styles of bond interactions

e bond_style harmonic - harmonic bond

bond_coeff command 5

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Restrictions:

This command must come after the simulation box is defined by a read data, read restart, or create box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.
Related commands:

bond style

Default: none

bond_coeff command

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_style harmonic command
Syntax:

bond_style harmonic

Examples:

bond_style harmonic
bond_coeff 5 80.0 1.2

Description:

The harmonic bond style uses the potential
- 2
E = K(r—rp)

where 10 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each bond type via the bond coeff command as in the example
above, or in the data file or restart files read by the read data or read restart commands:

¢ K (energy/distance”2)
¢ 10 (distance)

Restrictions:

This bond style can only be used if LIGGGHTS(R)-PUBLIC was built with the MOLECULAR package
(which it is by default). See the Making LIGGGHTS(R)-PUBLIC section for more info on packages.

Related commands:
bond coeff, delete_bonds

Default: none

bond_style harmonic command 7

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_style hybrid command
Syntax:
bond_style hybrid stylel style2 ...
¢ stylel,style2 = list of one or more bond styles

Examples:

bond_style hybrid harmonic fene
bond_coeff 1 harmonic 80.0 1.2
bond_coeff 2* fene 30.0 1.5 1.0 1.0

Description:

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each
bond type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential
and bonds in the wall boundary (of bond type 2) could be computed with a harmonic potential. The
assignment of bond type to style is made via the bond coeff command or in the data file.

In the bond_coeff commands, the name of a bond style must be added after the bond type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 bond_coeff commands set bonds
of bond type 1 to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other bond
types (2-N) are computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K, RO, epsilon, sigma.

If bond coefficients are specified in the data file read via the read data command, then the same rule applies.
E.g. "harmonic" or "fene" must be added after the bond type, for each line in the "Bond Coeffs" section, e.g.

Bond Coeffs

1 harmonic 80.

0 2
2 fene 30.0 1.5 0

1.
1.0 1.0

A bond style of none with no additional coefficients can be used in place of a bond style, either in a input
script bond_coeff command or in the data file, if you desire to turn off interactions for specific bond types.

Restrictions:

This bond style can only be used if LIGGGHTS(R)-PUBLIC was built with the MOLECULAR package
(which it is by default). See the Making LIGGGHTS(R)-PUBLIC section for more info on packages.

Unlike other bond styles, the hybrid bond style does not store bond coefficient info for individual sub-styles in
a binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify bond_coeff
commands.

Related commands:

bond coeff, delete bonds

Default: none

bond_style hybrid command 8

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_style none command
Syntax:

bond_style none

Examples:

bond_style none

Description:

Using a bond style of none means bond forces are not computed, even if pairs of bonded atoms were listed in
the data file read by the read data command.

Restrictions: none
Related commands: none

Default: none

bond_style none command 9

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

bond_style command
Syntax:
bond_style style args

¢ style = none or hybrid or class2 or fene or fene/expand or harmonic or morse or nonlinear or quartic

args = none for any style except hybrid
hybrid args = list of one or more styles
Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

Description:

Set the formula(s) LIGGGHTS(R)-PUBLIC uses to compute bond interactions between pairs of atoms. In
LIGGGHTS(R)-PUBLIC, a bond differs from a pairwise interaction, which are set via the pair_style
command. Bonds are defined between specified pairs of atoms and remain in force for the duration of the
simulation (unless the bond breaks which is possible in some bond potentials). The list of bonded atoms is
read in by a read data or read restart command from a data or restart file. By contrast, pair potentials are
typically defined between all pairs of atoms within a cutoff distance and the set of active interactions changes
over time.

Hybrid models where bonds are computed using different bond potentials can be setup using the hybrid bond
style.

The coefficients associated with a bond style can be specified in a data or restart file or via the bond coeff
command.

All bond potentials store their coefficient data in binary restart files which means bond_style and bond coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read restart
command for details on how to do this. The one exception is that bond_style hybrid only stores the list of
sub-styles in the restart file; bond coefficients need to be re-specified.

IMPORTANT NOTE: When both a bond and pair style is defined, the special bonds command often needs to
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 2 bonded atoms.

In the formulas listed for each bond style, r is the distance between the 2 atoms in the bond.

Here is an alphabetic list of bond styles defined in LIGGGHTS(R)-PUBLIC. Click on the style to display the
formula it computes and coefficients specified by the associated bond coeff command.

Note that there are also additional bond styles submitted by users which are included in the
LIGGGHTS(R)-PUBLIC distribution. The list of these with links to the individual styles are given in the bond
section of this page.

¢ bond style none - turn off bonded interactions
¢ bond style hybrid - define multiple styles of bond interactions

bond_style command 10

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

e bond_style harmonic - harmonic bond

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Most bond styles are part of the MOLECULAR package. They are only enabled if LIGGGHTS(R)-PUBLIC
was built with that package. See the Making ILIGGGHTS(R)-PUBLIC section for more info on packages. The
doc pages for individual bond potentials tell if it is part of a package.

Related commands:

bond coeff, delete_bonds

Default:

bond_style none

bond_style command 11

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

boundary command

Syntax:
boundary x y z

® X,y,Zz = p or s or f or m, one or two letters

p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value

Examples:

boundary p p £
boundary p fs p
boundary s f fm

Description:

Set the style of boundaries for the global simulation box in each dimension. A single letter assigns the same
style to both the lower and upper face of the box. Two letters assigns the first style to the lower face and the
second style to the upper face. The initial size of the simulation box is set by the read data, read restart, or
create_box commands.

The style p means the box is periodic, so that particles interact across the boundary, and they can exit one end
of the box and re-enter the other end. A periodic dimension can change in size due to constant pressure
boundary conditions or box deformation (see the fix npt and fix deform commands). The p style must be
applied to both faces of a dimension.

The styles f, s, and m mean the box is non-periodic, so that particles do not interact across the boundary and
do not move from one side of the box to the other. For style f, the position of the face is fixed. If an atom
moves outside the face it may be lost. For style s, the position of the face is set so as to encompass the atoms
in that dimension (shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is
bounded by the value specified in the data or restart file or set by the create box command. For example, if
the upper z face has a value of 50.0 in the data file, the face will always be positioned at 50.0 or above, even if
the maximum z-extent of all the atoms becomes less than 50.0.

For triclinic (non-orthogonal) simulation boxes, if the 2nd dimension of a tilt factor (e.g. y for xy) is periodic,
then the periodicity is enforced with the tilt factor offset. If the 1st dimension is shrink-wrapped, then the
shrink wrapping is applied to the tilted box face, to encompass the atoms. E.g. for a positive xy tilt, the xlo
and xhi faces of the box are planes tilting in the +y direction as y increases. These tilted planes are
shrink-wrapped around the atoms to determine the x extent of the box.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LIGGGHTS(R)-PUBLIC, and how to transform these parameters to and from other commonly used triclinic
representations.

IMPORTANT NOTE: If mesh walls (e.g. fix mesh/surface) are used, not only atom positions, but also the
mesh nodes are used for setting the boundaries.

Restrictions:

boundary command 12

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

This command cannot be used after the simulation box is defined by a read data or create _box command or
read restart command. See the change box command for how to change the simulation box boundaries after
it has been defined.

For 2d simulations, the z dimension must be periodic.

Related commands:

See the thermo modify command for a discussion of lost atoms.

Default:

boundary p p p

boundary command 13

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

box command

Syntax:
box keyword value ...

¢ one or more keyword/value pairs may be appended
¢ keyword = tilt

tilt value = small or large
Examples:

box tilt large
box tilt small

Description:

Set attributes of the simulation box.

For triclinic (non-orthogonal) simulation boxes, the tilt keyword allows simulation domains to be created with
arbitrary tilt factors, e.g. via the create box or read data commands. Tilt factors determine how skewed the
triclinic box is; see this section of the manual for a discussion of triclinic boxes in LIGGGHTS(R)-PUBLIC.
LIGGGHTS(R)-PUBLIC normally requires that no tilt factor can skew the box more than half the distance of
the parallel box length, which is the 1st dimension in the tilt factor (x for xz). If #ilt is set to small, which is the
default, then an error will be generated if a box is created which exceeds this limit. If #/# is set to large, then
no limit is enforced. You can create a box with any tilt factors you wish.

Note that if a simulation box has a large tilt factor, LIGGGHTS(R)-PUBLIC will run less efficiently, due to
the large volume of communication needed to acquire ghost atoms around a processor's irregular-shaped
sub-domain. For extreme values of tilt, LIGGGHTS(R)-PUBLIC may also lose atoms and generate an error.

Restrictions:

This command cannot be used after the simulation box is defined by a read data or create box command or
read restart command.

Related commands: none
Default:

The default value is tilt = small.

box command 14

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands
change_box command
Syntax:
change_box group-ID parameter args ... keyword args

¢ group-ID = ID of group of atoms to (optionally) displace
® one or more parameter/arg pairs may be appended

parameter = X Or y Or z Or Xy Or Xz Or yz or boundary or ortho or triclinic or set or rema
X, y, z args = style value(s)
style = final or delta or scale or volume
final values = lo hi
lo hi = box boundaries after displacement (distance units)
delta values = dlo dhi
dlo dhi = change in box boundaries after displacement (distance units)
scale values = factor
factor = multiplicative factor for change in box length after displacement
volume value = none = adjust this dim to preserve volume of system
Xy, Xz, yz args = style value
style = final or delta
final value = tilt

tilt = tilt factor after displacement (distance units)
delta value = dtilt
dtilt = change in tilt factor after displacement (distance units)
boundary args = X y z

X,y,z = p or s or £ or m, one or two letters
p is periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value
ortho args = none = change box to orthogonal
triclinic args = none = change box to triclinic
set args = none = store state of current box
remap args = none = remap atom coords from last saved state to current box

¢ zero or more keyword/value pairs may be appended
¢ keyword = units

units value = lattice or box
lattice = distances are defined in lattice units
box = distances are defined in simulation box units

Examples:

change_box all xy final -2.0 z final 0.0 5.0 boundary p p f remap units box
change_box all x scale 1.1 y volume z volume remap

Description:

Change the volume and/or shape and/or boundary conditions for the simulation box. Orthogonal simulation
boxes have 3 adjustable size parameters (X,y,z). Triclinic (non-orthogonal) simulation boxes have 6 adjustable
size/shape parameters (X,y,z,Xy,Xz,yz). Any or all of them can be adjusted independently by this command.
Thus it can be used to expand or contract a box, or to apply a shear strain to a non-orthogonal box. It can also
be used to change the boundary conditions for the simulation box, similar to the boundary command.

The size and shape of the initial simulation box are specified by the create box or read data or read restart
command used to setup the simulation. The size and shape may be altered by subsequent runs, e.g. by use of

change_box command 15

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

the fix npt or fix deform commands. The create box, read data, and read restart commands also determine
whether the simulation box is orthogonal or triclinic and their doc pages explain the meaning of the xy,xz,yz
tilt factors.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LIGGGHTS(R)-PUBLIC, and how to transform these parameters to and from other commonly used triclinic
representations.

The keywords used in this command are applied sequentially to the simulation box and the atoms in it, in the
order specified.

Before the sequence of keywords are invoked, the current box size/shape is stored, in case a remap keyword is
used to map the atom coordinates from a previously stored box size/shape to the current one.

After all the keywords have been processed, any shrink-wrap boundary conditions are invoked (see the
boundary command) which may change simulation box boundaries, and atoms are migrated to new owning
processors.

IMPORTANT NOTE: Unlike the earlier "displace_box" version of this command, atom remapping is NOT
performed by default. This command allows remapping to be done in a more general way, exactly when you
specify it (zero or more times) in the sequence of transformations. Thus if you do not use the remap keyword,
atom coordinates will not be changed even if the box size/shape changes. If a uniformly strained state is
desired, the remap keyword should be specified.

IMPORTANT NOTE: It is possible to lose atoms with this command. E.g. by changing the box without
remapping the atoms, and having atoms end up outside of non-periodic boundaries. It is also possible to alter
bonds between atoms straddling a boundary in bad ways. E.g. by converting a boundary from periodic to
non-periodic. It is also possible when remapping atoms to put them (nearly) on top of each other. E.g. by
converting a boundary from non-periodic to periodic. All of these will typically lead to bad dynamics and/or
generate error messages.

IMPORTANT NOTE: The simulation box size/shape can be changed by arbitrarily large amounts by this
command. This is not a problem, except that the mapping of processors to the simulation box is not changed
from its initial 3d configuration; see the processors command. Thus, if the box size/shape changes
dramatically, the mapping of processors to the simulation box may not end up as optimal as the initial
mapping attempted to be.

IMPORTANT NOTE: Because the keywords used in this command are applied one at a time to the simulation
box and the atoms in it, care must be taken with triclinic cells to avoid exceeding the limits on skew after each
transformation in the sequence. If skew is exceeded before the final transformation this can be avoided by
changing the order of the sequence, or breaking the transformation into two or more smaller transformations.
For more information on the allowed limits for box skew see the discussion on triclinic boxes on this page.

For the x, y, and z parameters, this is the meaning of their styles and values.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or
box distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can
be in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if

the initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0
means compression.

change_box command 16

LIGGGHTS(R)-PUBLIC Users Manual

The volume style changes the specified dimension in such a way that the overall box volume remains constant
with respect to the operation performed by the preceding keyword. The volume style can only be used
following a keyword that changed the volume, which is any of the x, y, z keywords. If the preceding keyword
"key" had a volume style, then both it and the current keyword apply to the keyword preceding "key". L.e. this
sequence of keywords is allowed:

change_box all x scale 1.1 y volume z volume

The volume style changes the associated dimension so that the overall box volume is unchanged relative to its
value before the preceding keyword was invoked.

If the following command is used, then the z box length will shrink by the same 1.1 factor the x box length
was increased by:

change_box all x scale 1.1 z volume

If the following command is used, then the y,z box lengths will each shrink by sqrt(1.1) to keep the volume
constant. In this case, the y,z box lengths shrink so as to keep their relative aspect ratio constant:

change_box all"x scale 1.1 y volume z volume

If the following command is used, then the final box will be a factor of 10% larger in x and y, and a factor of
21% smaller in z, so as to keep the volume constant:

change_box all x scale 1.1 z volume y scale 1.1 z volume

IMPORTANT NOTE: For solids or liquids, when one dimension of the box is expanded, it may be physically
undesirable to hold the other 2 box lengths constant since that implies a density change. For solids, adjusting
the other dimensions via the volume style may make physical sense (just as for a liquid), but may not be
correct for materials and potentials whose Poisson ratio is not 0.5.

For the scale and volume styles, the box length is expanded or compressed around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt
factors of a triclinic box does not change its volume.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the
discussion of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

All of these styles change the xy, xz, yz tilt factors. In LIGGGHTS(R)-PUBLIC, tilt factors (xy,xz,yz) for
triclinic boxes are required to be no more than half the distance of the parallel box length. For example, if xlo
=2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz
and yz must be between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum
tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all equivalent.
Any tilt factor specified by this command must be within these limits.

The boundary keyword takes arguments that have exactly the same meaning as they do for the boundary
command. In each dimension, a single letter assigns the same style to both the lower and upper face of the
box. Two letters assigns the first style to the lower face and the second style to the upper face.

The style p means the box is periodic; the other styles mean non-periodic. For style f, the position of the face
is fixed. For style s, the position of the face is set so as to encompass the atoms in that dimension

change_box command 17

LIGGGHTS(R)-PUBLIC Users Manual

(shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is bounded by the
current box edge in that dimension, so that the box will become no smaller. See the boundary command for
more explanation of these style options.

Note that the "boundary” command itself can only be used before the simulation box is defined via a

read data or create box or read restart command. This command allows the boundary conditions to be
changed later in your input script. Also note that the read restart will change boundary conditions to match
what is stored in the restart file. So if you wish to change them, you should use the change_box command
after the read_restart command.

The ortho and triclinic keywords convert the simulation box to be orthogonal or triclinic (non-orthongonal).
See this section for a discussion of how non-orthongal boxes are represented in LIGGGHTS(R)-PUBLIC.

The simulation box is defined as either orthogonal or triclinic when it is created via the create box, read data,
or read restart commands.

These keywords allow you to toggle the existing simulation box from orthogonal to triclinic and vice versa.
For example, an initial equilibration simulation can be run in an orthogonal box, the box can be toggled to
triclinic.

If the simulation box is currently triclinic and has non-zero tilt in Xy, yz, or Xz, then it cannot be converted to
an orthogonal box.

The set keyword saves the current box size/shape. This can be useful if you wish to use the remap keyword
more than once or if you wish it to be applied to an intermediate box size/shape in a sequence of keyword
operations. Note that the box size/shape is saved before any of the keywords are processed, i.e. the box
size/shape at the time the create_box command is encountered in the input script.

The remap keyword remaps atom coordinates from the last saved box size/shape to the current box state. For
example, if you stretch the box in the x dimension or tilt it in the xy plane via the x and xy keywords, then the
remap commmand will dilate or tilt the atoms to conform to the new box size/shape, as if the atoms moved
with the box as it deformed.

Note that this operation is performed without regard to periodic boundaries. Also, any shrink-wrapping of
non-periodic boundaries (see the boundary command) occurs after all keywords, including this one, have been

processed.

Only atoms in the specified group are remapped.

The units keyword determines the meaning of the distance units used to define various arguments. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing.

Restrictions:

If you use the ortho or triclinic keywords, then at the point in the input script when this command is issued, no
dumps can be active, nor can a fix ave/spatial or fix deform be active. This is because these commands test
whether the simulation box is orthogonal when they are first issued. Note that these commands can be used in
your script before a change_box command is issued, so long as an undump or unfix command is also used to
turn them off.

Related commands:

change_box command 18

LIGGGHTS(R)-PUBLIC Users Manual

fix _deform, boundary
Default:

The option default is units = lattice.

change_box command

19

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

clear command

Syntax:
clear
Examples:

(commands for 1lst simulation)
clear
(commands for 2nd simulation)

Description:

This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
LIGGGHTS(R)-PUBLIC. Once a clear command has been executed, it is as if LIGGGHTS(R)-PUBLIC were
starting over, with only the exceptions noted below. This command enables multiple jobs to be run
sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status
(log command), echo status (echo command), and input script variables (variable command).

Restrictions: none

Related commands: none

Default: none

clear command 20

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

communicate command

Syntax:
communicate style keyword value ...

e style = single or multi
¢ zero or more keyword/value pairs may be appended
¢ keyword = cutoff or group or vel

cutoff value = Rcut (distance units) = communicate atoms from this far away
group value = group-ID = only communicate atoms in the group
vel value = yes or no = do or do not communicate velocity info with ghost atoms

Examples:

communicate multi

communicate multi group solvent
communicate single vel yes
communicate single cutoff 5.0 vel yes

Description:

This command sets the style of inter-processor communication that occurs each timestep as atom coordinates
and other properties are exchanged between neighboring processors and stored as properties of ghost atoms.

The default style is single which means each processor acquires information for ghost atoms that are within a
single distance from its sub-domain. The distance is the maximum of the neighbor cutoff for all atom type
pairs.

For many systems this is an efficient algorithm, but for systems with widely varying cutoffs for different type
pairs, the multi style can be faster. In this case, each atom type is assigned its own distance cutoff for
communication purposes, and fewer atoms will be communicated. However, for granular systems
optimization is automatically performed with the single style, so multi is not necessary/available for granular
systems. See the neighbor multi command for a neighbor list construction option that may also be beneficial
for simulations of this kind.

The cutoff option allows you to set a ghost cutoff distance, which is the distance from the borders of a
processor's sub-domain at which ghost atoms are acquired from other processors. By default the ghost cutoff =
neighbor cutoff = pairwise force cutoff + neighbor skin. See the neighbor command for more information
about the skin distance. If the specified Rcut is greater than the neighbor cutoff, then extra ghost atoms will be
acquired. If it is smaller, the ghost cutoff is set to the neighbor cutoff.

These are simulation scenarios in which it may be useful or even necessary to set a ghost cutoff > neighbor
cutoff:

¢ a single polymer chain with bond interactions, but no pairwise interactions
¢ bonded interactions (e.g. dihedrals) extend further than the pairwise cutoff
¢ ghost atoms beyond the pairwise cutoff are needed for some computation

In the first scenario, a pairwise potential is not defined. Thus the pairwise neighbor cutoff will be 0.0. But
ghost atoms are still needed for computing bond, angle, etc interactions between atoms on different
processors, or when the interaction straddles a periodic boundary.

communicate command 21

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The appropriate ghost cutoff depends on the newton bond setting. For newton bond off, the distance needs to
be the furthest distance between any two atoms in the bond. E.g. the distance between 1-4 atoms in a dihedral.
For newton bond on, the distance between the central atom in the bond, angle, etc and any other atom is
sufficient. E.g. the distance between 2-4 atoms in a dihedral.

In the second scenario, a pairwise potential is defined, but its neighbor cutoff is not sufficiently long enough
to enable bond, angle, etc terms to be computed. As in the previous scenario, an appropriate ghost cutoff
should be set.

In the last scenario, a fix or compute or pairwise potential needs to calculate with ghost atoms beyond the
normal pairwise cutoff for some computation it performs (e.g. locate neighbors of ghost atoms in a multibody
pair potential). Setting the ghost cutoff appropriately can insure it will find the needed atoms.

IMPORTANT NOTE: In these scenarios, if you do not set the ghost cutoff long enough, and if there is only
one processor in a periodic dimension (e.g. you are running in serial), then LIGGGHTS(R)-PUBLIC may
"find" the atom it is looking for (e.g. the partner atom in a bond), that is on the far side of the simulation box,
across a periodic boundary. This will typically lead to bad dynamics (i.e. the bond length is now the
simulation box length). To detect if this is happening, see the neigh modify cluster command.

The group option will limit communication to atoms in the specified group. This can be useful for models
where no ghost atoms are needed for some kinds of particles. All atoms (not just those in the specified group)
will still migrate to new processors as they move. The group specified with this option must also be specified
via the atom modify first command.

The vel option enables velocity information to be communicated with ghost particles. Depending on the
atom_style, velocity info includes the translational velocity, angular velocity, and angular momentum of a
particle. If the vel option is set to yes, then ghost atoms store these quantities; if no then they do not. The yes
setting is needed by some pair styles which require the velocity state of both the I and J particles to compute a
pairwise L,J interaction.

Note that if the fix deform command is being used with its "remap v" option enabled, then the velocities for
ghost atoms (in the fix deform group) mirrored across a periodic boundary will also include components due
to any velocity shift that occurs across that boundary (e.g. due to dilation or shear).

Restrictions: none

Related commands:

neighbor

Default:

The default settings are style = single, group = all, cutoff = 0.0, vel = no. The cutoff default of 0.0 means that
ghost cutoff = neighbor cutoff = pairwise force cutoff + neighbor skin.

communicate command 22

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute atom/molecule command

Syntax:
compute ID group-ID atom/molecule inputl input2 ...

¢ ID, group-ID are documented in compute command

¢ atom/molecule = style name of this compute command
¢ one or more inputs can be listed

e input = c_ID, c_ID[N], f_ID, f_ID[N], v_name

c_ID = per-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID
f_ID = per-atom vector calculated by a fix with ID
f_ID[I] = Ith column of per-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name
Examples:

compute 1 all atom/molecule c_ke c_pe
compute 1 top atom/molecule v_myFormula c_stress3

Description:

Define a calculation that sums per-atom values on a per-molecule basis, one per listed input. The inputs can
computes, fixes, or yariables that generate per-atom quantities. Note that attributes stored by atoms, such as
mass or force, can also be summed on a per-molecule basis, by accessing these quantities via the compute

property/atom command.

Each listed input is operated on independently. Only atoms within the specified group contribute to the
per-molecule sum. Note that compute or fix inputs define their own group which may affect the quantities
they return. For example, if a compute is used as an input which generates a per-atom vector, it will generate
values of 0.0 for atoms that are not in the group specified for that compute.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

If an input begins with "c_", a compute ID must follow which has been previously defined in the input script
and which generates per-atom quantities. See the individual compute doc page for details. If no bracketed
integer is appended, the vector calculated by the compute is used. If a bracketed integer is appended, the Ith
column of the array calculated by the compute is used. Users can also write code for their own compute styles

and add them to LIGGGHTS(R)-PUBLIC.

If an input begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates per-atom quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute atom/molecule
references the values, else an error results. If no bracketed integer is appended, the vector calculated by the fix
is used. If a bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can
also write code for their own fix style and add them to LIGGGHTS(R)-PUBLIC.

If an input begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and

compute atom/molecule command 23

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a
very general means of generating per-atom quantities to sum on a per-molecule basis.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

All the vector or array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none
Related commands:

compute, fix, variable

Default: none

compute atom/molecule command 24

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute bond/local command

Syntax:
compute ID group-ID bond/local inputl input2 ...

¢ ID, group-ID are documented in compute command
¢ bond/local = style name of this compute command
¢ one or more keywords may be appended

¢ keyword = dist or eng

dist = bond distance
eng = bond energy
force = bond force

Examples:

compute 1 all bond/local eng
compute 1 all bond/local dist eng force

Description:

Define a computation that calculates properties of individual bond interactions. The number of datums
generated, aggregated across all processors, equals the number of bonds in the system, modified by the group
parameter as explained below.

The local data stored by this command is generated by looping over all the atoms owned on a processor and
their bonds. A bond will only be included if both atoms in the bond are in the specified compute group. Any
bonds that have been broken (see the bond style command) by setting their bond type to 0 are not included.
Bonds that have been turned off (see the fix shake or delete bonds commands) by setting their bond type
negative are written into the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, bond output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Here is an example of how to do this:

compute 1 all property/local batoml batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_1[1] c_1[2] c_1[3] c_2[1] c_2[2]

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of bonds. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

compute bond/local command 25

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The output for dist will be in distance units. The output for eng will be in energy units. The output for force
will be in force units.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

compute bond/local command

26

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute centro/atom command

Syntax:
compute ID group—-ID centro/atom lattice

¢ ID, group-ID are documented in compute command
® centro/atom = style name of this compute command
e lattice = fcc or bee or N = # of neighbors per atom to include

Examples:
compute 1 all centro/atom fcc

compute 1 all centro/atom 8
Description:

Define a computation that calculates the centro-symmetry parameter for each atom in the group. In solid-state
systems the centro-symmetry parameter is a useful measure of the local lattice disorder around an atom and
can be used to characterize whether the atom is part of a perfect lattice, a local defect (e.g. a dislocation or
stacking fault), or at a surface.

The value of the centro-symmetry parameter will be 0.0 for atoms not in the specified compute group.

This parameter is computed using the following formula from (Kelchner)

N/2 |
CS =) |Ri+ Riinypaf?

=1

where the N nearest neighbors or each atom are identified and Ri and Ri+N/2 are vectors from the central
atom to a particular pair of nearest neighbors. There are N*(N-1)/2 possible neighbor pairs that can contribute
to this formula. The quantity in the sum is computed for each, and the N/2 smallest are used. This will
typically be for pairs of atoms in symmetrically opposite positions with respect to the central atom; hence the
i+N/2 notation.

N is an input parameter, which should be set to correspond to the number of nearest neighbors in the
underlying lattice of atoms. If the keyword fcc or bec is used, N is set to 12 and 8 respectively. More
generally, N can be set to a positive, even integer.

For an atom on a lattice site, surrounded by atoms on a perfect lattice, the centro-symmetry parameter will be
0. It will be near 0 for small thermal perturbations of a perfect lattice. If a point defect exists, the symmetry is
broken, and the parameter will be a larger positive value. An atom at a surface will have a large positive
parameter. If the atom does not have N neighbors (within the potential cutoff), then its centro-symmetry
parameter is set to 0.0.

Only atoms within the cutoff of the pairwise neighbor list are considered as possible neighbors. Atoms not in
the compute group are included in the N neighbors used in this calculation.

compute centro/atom command 27

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a centro/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values are unitless values >= 0.0. Their magnitude depends on the lattice style due to the
number of contibuting neighbor pairs in the summation in the formula above. And it depends on the local
defects surrounding the central atom, as described above.

Here are typical centro-symmetry values, from a a nanoindentation simulation into gold (FCC). These were
provided by Jon Zimmerman (Sandia):

Bulk lattice = 0

Dislocation core ~ 1.0 (0.5 to 1.25)
Stacking faults ~ 5.0 (4.0 to 6.0)
Free surface ~ 23.0

These values are *not* normalized by the square of the lattice parameter. If they were, normalized values
would be:

Bulk lattice = 0

Dislocation core ~ 0.06 (0.03 to 0.075)
Stacking faults ~ 0.3 (0.24 to 0.36)
Free surface ~ 1.38

For BCC materials, the values for dislocation cores and free surfaces would be somewhat different, due to
their being only 8 neighbors instead of 12.

Restrictions: none
Related commands:

compute cna/atom

Default: none

(Kelchner) Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

compute centro/atom command 28

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute cluster/atom command
Syntax:
compute ID group-ID cluster/atom cutoff
¢ ID, group-ID are documented in compute command
¢ cluster/atom = style name of this compute command
¢ cutoff = distance within which to label atoms as part of same cluster (distance units)
Examples:
compute 1 all cluster/atom 1.0
Description:
Define a computation that assigns each atom a cluster ID.
A cluster is defined as a set of atoms, each of which is within the cutoff distance from one or more other
atoms in the cluster. If an atom has no neighbors within the cutoff distance, then it is a 1-atom cluster. The ID

of every atom in the cluster will be the smallest atom ID of any atom in the cluster.

Only atoms in the compute group are clustered and assigned cluster IDs. Atoms not in the compute group are
assigned a cluster ID = 0.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of a clsuter/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be an ID > 0, as explained above.
Restrictions: none
Related commands:

compute coord/atom

Default: none

compute cluster/atom command 29

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute cha/atom command

Syntax:
compute ID group-ID cna/atom cutoff
¢ ID, group-ID are documented in compute command
® cna/atom = style name of this compute command
e cutoff = cutoff distance for nearest neighbors (distance units)
Examples:
compute 1 all cna/atom 3.08
Description:
Define a computation that calculates the CNA (Common Neighbor Analysis) pattern for each atom in the
group. In solid-state systems the CNA pattern is a useful measure of the local crystal structure around an

atom. The CNA methodology is described in (Faken) and (Tsuzuki).

Currently, there are five kinds of CNA patterns LIGGGHTS(R)-PUBLIC recognizes:

efcc=1
ehcp=2
ebcc=3

® jcosohedral = 4
e unknown =5

The value of the CNA pattern will be 0 for atoms not in the specified compute group. Note that normally a
CNA calculation should only be performed on mono-component systems.

The CNA calculation can be sensitive to the specified cutoff value. You should insure the appropriate nearest
neighbors of an atom are found within the cutoff distance for the presumed crystal strucure. E.g. 12 nearest
neighbor for perfect FCC and HCP crystals, 14 nearest neighbors for perfect BCC crystals. These formulas
can be used to obtain a good cutoff distance:

1 V2
ri® = g+1 a ~ 0.8536 a

2 |

C

1
re® = S(V2+1)ax1207a

Whep o
e

S| =

where a is the lattice constant for the crystal structure concerned and in the HCP case, x = (c/a) / 1.633, where
1.633 is the ideal c/a for HCP crystals.

compute cna/atom command 30

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Also note that since the CNA calculation in LIGGGHTS(R)-PUBLIC uses the neighbors of an owned atom to
find the nearest neighbors of a ghost atom, the following relation should also be satisfied:

Rec 4+ Rs > 2 x cutoff

where Rc is the cutoff distance of the potential, Rs is the skin distance as specified by the neighbor command,
and cutoff is the argument used with the compute cna/atom command. LIGGGHTS(R)-PUBLIC will issue a
warning if this is not the case.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each with a cna/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be a number from O to 5, as explained above.
Restrictions: none
Related commands:

compute centro/atom

Default: none

(Faken) Faken, Jonsson, Comput Mater Sci, 2, 279 (1994).

(Tsuzuki) Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

compute cna/atom command 31

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute com command
Syntax:
compute ID group—-ID com

¢ ID, group-ID are documented in compute command
¢ com = style name of this compute command

Examples:
compute 1 all com
Description:

Define a computation that calculates the center-of-mass of the group of atoms, including all effects due to
atoms passing thru periodic boundaries.

A vector of three quantites is calculated by this compute, which are the X,y,z coordinates of the center of
mass.

IMPORTANT NOTE: The coordinates of an atom contribute to the center-of-mass in "unwrapped" form, by
using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command
that uses global vector values from a compute as input. See this section for an overview of
LIGGGHTS(R)-PUBLIC output options.

The vector values are "intensive". The vector values will be in distance units.

Restrictions: none

Related commands:

compute com/molecule

Default: none

compute com command 32

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute com/molecule command

Syntax:
compute ID group-ID com/molecule

¢ ID, group-ID are documented in compute command
¢ com/molecule = style name of this compute command

Examples:
compute 1 fluid com/molecule
Description:

Define a computation that calculates the center-of-mass of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The x,y,z coordinates of the center-of-mass for a particular molecule are only computed if one or more of its
atoms are in the specified group. Normally all atoms in the molecule should be in the group, however this is
not required. LIGGGHTS(R)-PUBLIC will warn you if this is not the case. Only atoms in the group
contribute to the center-of-mass calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's center-of-mass in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries,
you will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
3 for the x,y,z center-of-mass coordinates of each molecule. These values can be accessed by any command
that uses global array values from a compute as input. See Section _howto 15 for an overview of
LIGGGHTS(R)-PUBLIC output options.

The array values are "intensive". The array values will be in distance units.
Restrictions: none

Related commands:

compute com/molecule command 33

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
compute com

Default: none

compute com/molecule command

34

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute contact/atom command
Syntax:
compute ID group-ID contact/atom

¢ ID, group-ID are documented in compute command
® contact/atom = style name of this compute command

Examples:

compute 1 all contact/atom

Description:

Define a computation that calculates the number of contacts for each atom in a group.

The contact number is defined for finite-size spherical particles as the number of neighbor atoms which
overlap the central particle, meaning that their distance of separation is less than or equal to the sum of the
radii of the two particles.

The value of the contact number will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, whose values can be accessed by any command that uses per-atom
values from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output
options.

The per-atom vector values will be a number >= 0.0, as explained above.

Restrictions:

This compute requires that atoms store a radius as defined by the atom_style sphere command.

Related commands:

compute coord/atom

Default: none

compute contact/atom command 35

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute coord/atom command

Syntax:

compute ID group-ID coord/atom cutoff keyword value

¢ ID, group-ID are documented in compute command

¢ coord/atom = style name of this compute command cutoff = distance within which to count
coordination neighbors (distance units) zero or more keyword/value pairs may be appended to args

¢ keyword = mix or typel, type2, ...

mix value = yes or no -ID
no = count all neighbors
yes = count only neighbors that have same atom type

typeN = atom type for Nth coordination count (see asterisk form below)

Examples:

all coord/atom
all coord/atom
all coord/atom
all coord/atom

compute
compute
compute
compute

e e e

Description:
Define a computation that calculates one or more coordination numbers for each atom in a group.

A coordination number is defined as the number of neighbor atoms with specified atom type(s) that are within
the specified cutoff distance from the central atom. Atoms not in the group are included in a coordination
number of atoms in the group.

The typeN keywords allow you to specify which atom types contribute to each coordination number. One
coordination number is computed for each of the typeN keywords listed. If no fypeN keywords are listed, a
single coordination number is calculated, which includes atoms of all types (same as the "*" format, see
below).

The typeN keywords can be specified in one of two ways. An explicit numeric value can be used, as in the 2nd
example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the form "*"
or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all
types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

The value of all coordination numbers will be 0.0 for atoms not in the specified compute group.
The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too

frequently.

Keyword mix controlls if all neighbors are counted or if only neighbors with same atom type are counted. The
latter can be useful to quanitfy mixture of different species.

compute coord/atom command 36

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

IMPORTANT NOTE: If you have a bonded system, then the settings of special bonds command can remove
pairwise interactions between atoms in the same bond. This is the default setting for the special bonds
command, and means those pairwise interactions do not appear in the neighbor list. Because this fix uses the
neighbor list, it also means those pairs will not be included in the coordination count. One way to get around
this, is to write a dump file, and use the rerun command to compute the coordination for snapshots in the
dump file. The rerun script can use a special bonds command that includes all pairs in the neighbor list.

Output info:

If single typel keyword is specified (or if none are specified), or the mix keyword is used, this compute
calculates a per-atom vector. If multiple fypeN keywords are specified, this compute calculates a per-atom
array, with N columns. These values can be accessed by any command that uses per-atom values from a
compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.
The per-atom vector or array values will be a number >= (.0, as explained above.

Restrictions: none

Related commands:

compute cluster/atom

Default: none

compute coord/atom command 37

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute coord/gran command
Syntax:
compute ID group-ID coord/gran

¢ ID, group-ID are documented in compute command
® coord/atom = style name of this compute command

Examples:
compute 1 all coord/gran
Description:

Define a computation that calculates the coordination number for each atom in a group. The value of the
coordination number will be 0.0 for atoms not in the specified compute group.

The coordination number is defined as the number of neighbor atoms within the granular cutoff distance from
the central atom. The cutoff distance for granular systems is the sum of the radii of the two particles.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e.
each time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too
frequently or to have multiple compute/dump commands, each of a coord/gran style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be a number >= 0.0, as explained above.
Restrictions:

This command cannot be applied to multi-sphere simulations, as the output will not be the per-body
coordination number.

Related commands: none

Default: none

compute coord/gran command 38

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute displace/atom command

Syntax:
compute ID group—-ID displace/atom

¢ ID, group-ID are documented in compute command
e displace/atom = style name of this compute command

Examples:
compute 1 all displace/atom
Description:

Define a computation that calculates the current displacement of each atom in the group from its original
coordinates, including all effects due to atoms passing thru periodic boundaries.

A vector of four quantites per atom is calculated by this compute. The first 3 elements of the vector are the
dx,dy,dz displacements. The 4th component is the total displacement, i.e. sqrt(dx*dx + dy*dy + dz*dz).

The displacement of an atom is from its original position at the time the compute command was issued. The
value of the displacement will be 0.0 for atoms not in the specified compute group.

IMPORTANT NOTE: Initial coordinates are stored in "unwrapped" form, by using the image flags associated
with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the Atoms
section of the read data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and the computed displacement may not reflect its true displacement. See the fix rigid command
for details. Thus, to compute the displacement of rigid bodies as they cross periodic boundaries, you will need
to post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart
file.

Output info:
This compute calculates a per-atom array with 4 columns, which can be accessed by indices 1-4 by any

command that uses per-atom values from a compute as input. See Section _howto 15 for an overview of
LIGGGHTS(R)-PUBLIC output options.

The per-atom array values will be in distance units.
Restrictions: none

Related commands:

compute displace/atom command 39

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
compute msd, dump custom, fix store/state

Default: none

compute displace/atom command

40

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute erotate/asphere command
Syntax:
compute ID group-ID erotate/asphere

¢ ID, group-ID are documented in compute command
e erotate/asphere = style name of this compute command

Examples:

compute 1 all erotate/asphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of aspherical particles. The
aspherical particles can be ellipsoids, or line segments, or triangles. See the atom_style and read data
commands for descriptions of these options.

For all 3 types of particles, the rotational kinetic energy is computed as 1/2 I w”2, where I is the inertia tensor
for the aspherical particle and w is its angular velocity, which is computed from its angular momentum if

needed.

IMPORTANT NOTE: For 2d models, ellipsoidal particles are treated as ellipsoids, not ellipses, meaning their
moments of inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC
output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.

Restrictions:

This compute requires that ellipsoidal particles atoms store a shape and quaternion orientation and angular
momentum as defined by the atom_style ellipsoid command.

This compute requires that line segment particles atoms store a length and orientation and angular velocity as
defined by the atom_style line command.

This compute requires that triangular particles atoms store a size and shape and quaternion orientation and
angular momentum as defined by the atom_style tri command.

All particles in the group must be finite-size. They cannot be point particles.

Related commands: none

compute erotate/sphere

compute erotate/asphere command 41

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Default: none

compute erotate/asphere command

42

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute erotate/sphere/atom command
Syntax:
compute ID group-ID erotate/sphere/atom

¢ ID, group-ID are documented in compute command
e erotate/sphere/atom = style name of this compute command

Examples:

compute 1 all erotate/sphere/atom

Description:

Define a computation that calculates the rotational kinetic energy for each particle in a group.

The rotational energy is computed as 1/2 I w*2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

The value of the rotational kinetic energy will be 0.0 for atoms not in the specified compute group or for point
particles with a radius = 0.0.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be in energy units.
Restrictions: none
Related commands:

dump custom

Default: none

compute erotate/sphere/atom command 43

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute erotate/sphere command
Syntax:
compute ID group-ID erotate/sphere

¢ ID, group-ID are documented in compute command
e erotate/sphere = style name of this compute command

Examples:

compute 1 all erotate/sphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of spherical particles.

The rotational energy is computed as 1/2 I w*2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of
inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC
output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.

Restrictions:

This compute requires that atoms store a radius and angular velocity (omega) as defined by the atom_style
sphere command.

All particles in the group must be finite-size spheres or point particles. They cannot be aspherical. Point
particles will not contribute to the rotational energy.

Related commands:

compute erotate/asphere

Default: none

compute erotate/sphere command 44

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute group/group command

Syntax:
compute ID group-ID group/group group2-ID keyword value ...

¢ ID, group-ID are documented in compute command
¢ group/group = style name of this compute command
¢ group2-ID = group ID of second (or same) group

¢ zero or more keyword/value pairs may be appended
¢ keyword = pair or boundary

palir value = yes or no
boundary value = yes or no

Examples:

compute 1 lower group/group upper
compute mine fluid group/group wall

Description:

Define a computation that calculates the total energy and force interaction between two groups of atoms: the
compute group and the specified group2. The two groups can be the same.

If the pair keyword is set to yes, which is the default, then the the interaction energy will include a pair
component which is defined as the pairwise energy between all pairs of atoms where one atom in the pair is in
the first group and the other is in the second group. Likewise, the interaction force calculated by this compute
will include the force on the compute group atoms due to pairwise interactions with atoms in the specified
group?2.

This compute does not calculate any bond interactions between atoms in the two groups.

The pairwise contributions to the group-group interactions are calculated by looping over a neighbor list.
Output info:

This compute calculates a global scalar (the energy) and a global vector of length 3 (force), which can be
accessed by indices 1-3. These values can be used by any command that uses global scalar or vector values

from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

Both the scalar and vector values calculated by this compute are "extensive". The scalar value will be in
energy units. The vector values will be in force units.

Restrictions:
Related commands: none
Default:

The option defaults are pair = yes, kspace = no, and boundary = yes.

compute group/group command 45

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
Bogusz et al, J Chem Phys, 108, 7070 (1998)

compute group/group command

46

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute gyration command

Syntax:
compute ID group-ID gyration

¢ ID, group-ID are documented in compute command
¢ gyration = style name of this compute command

Examples:
compute 1 molecule gyration
Description:

Define a computation that calculates the radius of gyration Rg of the group of atoms, including all effects due
to atoms passing thru periodic boundaries.

Rg is a measure of the size of the group of atoms, and is computed by this formula

1 ‘

2 2

Ry® =i ¥ W15~ %)
M 4

where M is the total mass of the group, Rcm is the center-of-mass position of the group, and the sum is over
all atoms in the group.

A Rg tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the components
of the tensor is the same as the above formula, except that (Ri - Rem)”2 is replaced by (Rix - Remx) * (Riy -
Rcmy) for the xy component, etc. The 6 components of the vector are ordered XX, yy, zz, Xy, Xz, yZ.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image

flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

Output info:

This compute calculates a global scalar (Rg) and a global vector of length 6 (Rg tensor), which can be
accessed by indices 1-6. These values can be used by any command that uses a global scalar value or vector
values from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC output
options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be
in distance units.

Restrictions: none

Related commands:

compute gyration command 47

http://www.cfdem.com

compute gyration/molecule

Default: none

compute gyration command

LIGGGHTS(R)-PUBLIC Users Manual

48

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute gyration/molecule command

Syntax:
compute ID group-ID gyration/molecule keyword value ...

¢ ID, group-ID are documented in compute command

¢ gyration/molecule = style name of this compute command
¢ zero or more keyword/value pairs may be appended

¢ keyword = tensor

tensor value = none
Examples:

compute 1 molecule gyration/molecule
compute 2 molecule gyration/molecule tensor

Description:

Define a computation that calculates the radius of gyration Rg of individual molecules. The calculation
includes all effects due to atoms passing thru periodic boundaries.

Rg is a measure of the size of a molecule, and is computed by this formula

. 1

.?'f'l-i(?"i 7 ?"r:rirn)2

where M is the total mass of the molecule, Rcm is the center-of-mass position of the molecule, and the sum is
over all atoms in the molecule and in the group.

If the tensor keyword is specified, then the scalar Rg value is not calculated, but an Rg tensor is instead
calculated for each molecule. The formula for the components of the tensor is the same as the above formula,
except that (Ri - Rem)”2 is replaced by (Rix - Remx) * (Riy - Remy) for the Xy component, etc. The 6
components of the tensor are ordered XX, yy, zz, Xy, Xz, yZ.

Rg for a particular molecule is only computed if one or more of its atoms are in the specified group. Normally
all atoms in the molecule should be in the group, however this is not required. LIGGGHTS(R)-PUBLIC will
warn you if this is not the case. Only atoms in the group contribute to the Rg calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image

flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

compute gyration/molecule command 49

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This compute calculates a global vector if the fensor keyword is not specified and a global array if it is. The
length of the vector or number of rows in the array is the number of molecules. If the fensor keyword is
specified, the global array has 6 columns. The vector or array can be accessed by any command that uses
global values from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output
options.

All the vector or array values calculated by this compute are "intensive". The vector or array values will be in
distance units.

Restrictions: none

Related commands: none

compute gyration

Default: none

compute gyration/molecule command 50

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute command

Syntax:
compute ID group-ID style args

¢ ID = user-assigned name for the computation

¢ group-ID = ID of the group of atoms to perform the computation on
¢ style = one of a list of possible style names (see below)

¢ args = arguments used by a particular style

Examples:

compute 1 all temp
compute newtemp flow temp/partial 1 1 0
compute 3 all ke/atom

Description:

Define a computation that will be performed on a group of atoms. Quantities calculated by a compute are
instantaneous values, meaning they are calculated from information about atoms on the current timestep or
iteration, though a compute may internally store some information about a previous state of the system.
Defining a compute does not perform a computation. Instead computes are invoked by other
LIGGGHTS(R)-PUBLIC commands as needed, e.g. to calculate dump file output. See this howto section for a
summary of various LIGGGHTS(R)-PUBLIC output options, many of which involve computes.

The full list of fixes defined in LIGGGHTS(R)-PUBLIC is on this page.

The ID of a compute can only contain alphanumeric characters and underscores.

Computes calculate one of three styles of quantities: global, per-atom, or local. A global quantity is one or
more system-wide values, e.g. the temperature of the system. A per-atom quantity is one or more values per
atom, e.g. the kinetic energy of each atom. Per-atom values are set to 0.0 for atoms not in the specified
compute group. Local quantities are calculated by each processor based on the atoms it owns, but there may
be zero or more per atom, e.g. a list of bond distances. Computes that produce per-atom quantities have the
word "atom" in their style, e.g. ke/atom. Computes that produce local quantities have the word "local" in their
style, e.g. bond/local. Styles with neither "atom" or "local" in their style produce global quantities.

Note that a single compute produces either global or per-atom or local quantities, but never more than one of
these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for each compute describes the style and kind of values it produces, e.g. a
per-atom vector. Some computes produce more than one kind of a single style, e.g. a global scalar and a
global vector.

When a compute quantity is accessed, as in many of the output commands discussed below, it can be
referenced via the following bracket notation, where ID is the ID of the compute:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

compute command 51

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

|c_ID [11[J] |one element of array |
In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array ->
vector). Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar
compute values as input can also process elements of a vector or array.

Note that commands and variables which use compute quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
compute quantity as c_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LIGGGHTS(R)-PUBLIC, the values generated by a compute can be used in several ways:

¢ Global values can be output via the thermo style custom or fix ave/time command. Or the values can be
referenced in a yariable equal or variable atom command.

¢ Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or they can
be time-averaged via the fix ave/atom command or reduced by the compute reduce command. Or the
per-atom values can be referenced in an atom-style variable.

e Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command, or output by the dump local command.

The results of computes that calculate global quantities can be either "intensive" or "extensive" values.
Intensive means the value is independent of the number of atoms in the simulation, e.g. temperature.
Extensive means the value scales with the number of atoms in the simulation, e.g. total rotational kinetic
energy. Thermodynamic output will normalize extensive values by the number of atoms in the system,
depending on the "thermo_modify norm" setting. It will not normalize intensive values. If a compute value
is accessed in another way, e.g. by a variable, you may want to know whether it is an intensive or extensive
value. See the doc page for individual computes for further info.

Properties of either a default or user-defined compute can be modified via the compute modify command.
Computes can be deleted with the uncompute command.

Code for new computes can be added to LIGGGHTS(R)-PUBLIC (see this section of the manual) and the
results of their calculations accessed in the various ways described above.

Each compute style has its own doc page which describes its arguments and what it does. The full list of
computes defined in LIGGGHTS(R)-PUBLIC is on this page.

Restrictions: none
Related commands:
uncompute, compute modify, fix ave/atom, fix ave/spatial, fix ave/time, fix ave/histo

Default: none

compute command 52

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute inertia/molecule command

Syntax:
compute ID group-ID inertia/molecule

¢ ID, group-ID are documented in compute command
¢ inertia/molecule = style name of this compute command

Examples:
compute 1 fluid inertia/molecule
Description:

Define a computation that calculates the inertia tensor of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The symmetric intertia tensor has 6 components, ordered Ixx,lyy,Izz,Ixy,lyz,Ixz. The tensor for a particular
molecule is only computed if one or more of its atoms is in the specified group. Normally all atoms in the
molecule should be in the group, however this is not required. LIGGGHTS(R)-PUBLIC will warn you if this
is not the case. Only atoms in the group contribute to the inertia tensor and associated center-of-mass
calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, the molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's inertia tensor in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read data command for a discussion of image flags
and how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by
using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the inertia tensor may not reflect its true contribution. See the fix rigid
command for details. Thus, to compute the inertia tensor of rigid bodies as they cross periodic boundaries, you
will need to post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
6 for the 6 components of the inertia tensor of each molecule, ordered as listed above. These values can be
accessed by any command that uses global array values from a compute as input. See Section _howto 15 for an

overview of LIGGGHTS(R)-PUBLIC output options.

The array values are "intensive". The array values will be in distance units.

Restrictions: none

Related commands:

compute inertia/molecule command 53

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
variable inertia() function

Default: none

compute inertia/molecule command

54

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute ke/atom command
Syntax:
compute ID group-ID ke/atom

¢ ID, group-ID are documented in compute command
¢ ke/atom = style name of this compute command

Examples:

compute 1 all ke/atom

Description:

Define a computation that calculates the per-atom translational kinetic energy for each atom in a group.
The kinetic energy is simply 1/2 m v*2, where m is the mass and v is the velocity of each atom.

The value of the kinetic energy will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be in energy units.
Restrictions: none
Related commands:

dump custom

Default: none

compute ke/atom command 55

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute ke command
Syntax:
compute ID group-ID ke

¢ ID, group-ID are documented in compute command
¢ ke = style name of this compute command

Examples:

compute 1 all ke

Description:

Define a computation that calculates the translational kinetic energy of a group of particles.

The kinetic energy of each particle is computed as 1/2 m v*2, where m and v are the mass and velocity of the
particle.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated
by the ke keyword used in thermodynamic output, as specified by the thermo style command. For this
compute, kinetic energy is "translational" kinetic energy, calculated by the simple formula above. For
thermodynamic output, the ke keyword infers kinetic energy from the temperature of the system with 1/2 Kb
T of energy for each degree of freedom. For the default temperature computation via the compute temp
command, these are the same. But different computes that calculate temperature can subtract out different

non-thermal components of velocity and/or include different degrees of freedom (translational, rotational,
etc).

Output info:

This compute calculates a global scalar (the summed KE). This value can be used by any command that uses a
global scalar value from a compute as input. See Section _howto 15 for an overview of
LIGGGHTS(R)-PUBLIC output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute erotate/sphere

Default: none

compute ke command 56

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute_modify command

Syntax:
compute_modify compute-ID keyword value ...

e compute-ID = ID of the compute to modify
¢ one or more keyword/value pairs may be listed
¢ keyword = extra or dynamic

extra value = N
N = # of extra degrees of freedom to subtract
dynamic value = yes or no

yes/no = do or do not recompute the number of atoms contributing to the temperature
thermo value = yes or no
yes/no = do or do not add contributions from fixes to the potential energy

Examples:

compute_modify myTemp extra O
compute_modify newtemp dynamic yes extra 600

Description:

Modify one or more parameters of a previously defined compute. Not all compute styles support all
parameters.

The extra keyword refers to how many degrees-of-freedom are subtracted (typically from 3N) as a
normalizing factor in a temperature computation. Only computes that compute a temperature use this option.
The default is 2 or 3 for 2d or 3d systems which is a correction factor for an ensemble of velocities with zero
total linear momentum. You can use a negative number for the extra parameter if you need to add
degrees-of-freedom. See the compute temp/asphere command for an example.

The dynamic keyword determines whether the number of atoms N in the compute group is re-computed each
time a temperature is computed. Only compute styles that compute a temperature use this option. By default,
N is assumed to be constant. If you are adding atoms to the system (see the fix_pour or fix deposit commands)
or expect atoms to be lost (e.g. due to evaporation), then this option can be used to insure the temperature is
correctly normalized.

The thermo keyword determines whether the potential energy contribution calculated by some fixes is added
to the potential energy calculated by the compute. Currently, only the compute of style pe uses this option.
See the doc pages for individual fixes for details.

Restrictions: none
Related commands:
compute

Default:

The option defaults are extra =2 or 3 for 2d or 3d systems and dynamic = no. Thermo is yes if the compute of
style pe was defined with no extra keywords; otherwise it is no.

compute_modify command 57

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute msd command

Syntax:
compute ID group-ID msd keyword values ...

¢ ID, group-ID are documented in compute command
¢ msd = style name of this compute command

¢ zero or more keyword/value pairs may be appended
¢ keyword = com

com value = yes or no
Examples:

compute 1 all msd
compute 1 upper msd com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) of the group of atoms, including
all effects due to atoms passing thru periodic boundaries. For computation of the non-Gaussian parameter of
mean-squared displacement, see the compute msd/nongauss command.

A vector of four quantites is calculated by this compute. The first 3 elements of the vector are the squared
dx,dy,dz displacements, summed and averaged over atoms in the group. The 4th element is the total squared
displacement, i.e. (dx*dx + dy*dy + dz*dz), summed and averaged over atoms in the group.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing atoms.

The displacement of an atom is from its original position at the time the compute command was issued. The
value of the displacement will be 0.0 for atoms not in the specified compute group.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is
subtracted out before the displacment of each atom is calcluated.

IMPORTANT NOTE: Initial coordinates are stored in "unwrapped" form, by using the image flags associated
with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the Atoms
section of the read data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running
from a restart file, then you should use the same ID for this compute, as in the original run. This is so that the
created fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart
file.

compute msd command 58

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
Output info:
This compute calculates a global vector of length 4, which can be accessed by indices 1-4 by any command
that uses global vector values from a compute as input. See this section for an overview of
LIGGGHTS(R)-PUBLIC output options.
The vector values are "intensive". The vector values will be in distance”2 units.
Restrictions: none
Related commands:
compute msd/nongauss, compute displace atom, fix store/state, compute msd/molecule

Default:

The option default is com = no.

compute msd command

59

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute msd/molecule command

Syntax:
compute ID group-ID msd/molecule

¢ ID, group-ID are documented in compute command
¢ msd/molecule = style name of this compute command

Examples:
compute 1 all msd/molecule
Description:

Define a computation that calculates the mean-squared displacement (MSD) of individual molecules. The
calculation includes all effects due to atoms passing thru periodic boundaries.

Four quantites are calculated by this compute for each molecule. The first 3 quantities are the squared
dx,dy,dz displacements of the center-of-mass. The 4th component is the total squared displacement, i.e.
(dx*dx + dy*dy + dz*dz) of the center-of-mass.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of
the diffusing molecules.

The displacement of the center-of-mass of the molecule is from its original center-of-mass position at the time
the compute command was issued.

The MSD for a particular molecule is only computed if one or more of its atoms are in the specified group.
Normally all atoms in the molecule should be in the group, however this is not required.
LIGGGHTS(R)-PUBLIC will warn you if this is not the case. Only atoms in the group contribute to the
center-of-mass calculation for the molecule, which is used to caculate its initial and current position.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The initial coordinates of each molecule are stored in "unwrapped" form, by using the
image flags associated with each atom. See the dump custom command for a discussion of "unwrapped"
coordinates. See the Atoms section of the read data command for a discussion of image flags and how they
are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set
image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags
are altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: Unlike the compute msd command, this compute does not store the initial

center-of-mass coorindates of its molecules in a restart file. Thus you cannot continue the MSD per molecule
calculation of this compute when running from a restart file.

compute msd/molecule command 60

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns =
4 for dx,dy,dz and the total displacement. These values can be accessed by any command that uses global
array values from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output
options.

The array values are "intensive". The array values will be in distance”2 units.

Restrictions: none

Related commands:

compute msd

Default: none

compute msd/molecule command 61

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute msd/nongauss command

Syntax:
compute ID group-ID msd/nongauss keyword values ...

¢ ID, group-ID are documented in compute command

¢ msd/nongauss = style name of this compute command
¢ zero or more keyword/value pairs may be appended

¢ keyword = com

com value = yes or no
Examples:

compute 1 all msd/nongauss
compute 1 upper msd/nongauss com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) and non-Gaussian parameter
(NGP) of the group of atoms, including all effects due to atoms passing thru periodic boundaries.

A vector of three quantites is calculated by this compute. The first element of the vector is the total squared
dx,dy,dz displacements drsquared = (dx*dx + dy*dy + dz*dz) of atoms, and the second is the fourth power of
these displacements drfourth = (dx*dx + dy*dy + dz*dz)*(dx*dx + dy*dy + dz*dz), summed and averaged
over atoms in the group. The 3rd component is the nonGaussian diffusion paramter NGP =
3*drfourth/(5*drsquared*drsquared), i.e.

NGP(t) =3 < (r(t) —r(0))* > /(5 < (r(t) — r(0))* >*) -1

The NGP is a commonly used quantity in studies of dynamical heterogeneity. Its minimum theoretical value
(-0.4) occurs when all atoms have the same displacement magnitude. NGP=0 for Brownian diffusion, while
NGP > 0 when some mobile atoms move faster than others.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is
subtracted out before the displacment of each atom is calcluated.

See the compute msd doc page for further IMPORTANT NOTES, which also apply to this compute.
Output info:

This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command
that uses global vector values from a compute as input. See this section for an overview of

LIGGGHTS(R)-PUBLIC output options.

The vector values are "intensive". The first vector value will be in distance”?2 units, the second is in distance”4
units, and the 3rd is dimensionless.

compute msd/nongauss command 62

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Restrictions:

This compute is part of the MISC package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with that
package. See the Making LIGGGHTS(R)-PUBLIC section for more info.

Related commands:

compute msd

Default:

The option default is com = no.

compute msd/nongauss command 63

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute nparticles/tracer/region command

Syntax:
compute ID group-ID nparticles/tracer/region

¢ ID, group-ID are documented in compute command

¢ nparticles/tracer/region = style name of this compute command
¢ region_count = obligatory keyword

¢ region-ID = ID of region atoms must be in to be counted

¢ tracer = obligatory keyword

e tracer-ID = ID of a fix of type fix property/atom/tracer

e zero or more keyword/value pairs may be appended to args

¢ keyword = periodic or reset_marker

periodic value = dim image
dim = x or y or z
image = image that a particle has to be in to be counted (any integer number or all)
reset_marker value = yes or no
yes = un-mark particles after counting them
no = do not un-mark particles after counting them
Examples:

compute nparticles all nparticles/tracer/region region_count count tracer tr periodic z -1
Description:
Define a computation that calculates the number and mass of marked and un-marked particles that are in

the region speficied via the region_count keyword. Particles have to be in the group "group-ID" to be
counted.

Note that only particles marked by a fix property/atom/tracer or fix property/atom/tracer/stream command
are counted - therefore, a valid ID of such a fix has to be provided via the tracer keyword.

The reset_marker keyword controls if particles are un-marked (default) after they have been counted once
by this command.

IMPORTANT NOTE: If multiple compute nparticles/tracer/region commands are operating on the same fix

property/atom/tracer commands, and the first compute resets the marker value, the second compute will not
count them.

With the periodic keyword, you can restrict counting/unmarking to particles which are in a specified image
in a periodic simulation. For example, using

periodic z +2

means that particles are only counted if they are in z-image #2. By default, all particles are
counted/unmarked regardless in which periodic image they are.

IMPORTANT NOTE: Currently, this command only supports one periodic boundary restriction via the
periodic keyword. If keyword periodic is used multiple times, the last setting will be applied.

compute nparticles/tracer/region command 64

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This this compute calculates a global vector containing the following information (the number in brackets

corresponds to the vector id):
¢ (1) total number of (marked + un-marked) particles in region
® (2) number of marked particles in region
® (3) total mass of (marked + un-marked) particles in region
® (4) mass of marked particles in region

See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

Restrictions:

Currently, only one periodic restriction via the periodic keyword can be used.

Related commands:

fix_property/atom/tracer

Default: reset_marker = yes, periodic is off per default

compute nparticles/tracer/region command

65

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute pair/gran/local command

compute wall/gran/local command

Syntax:

compute ID group-ID pair/gran/local keywords
compute ID group-ID wall/gran/local keywords

¢ ID, group-ID are documented in compute command
e pair/gran/local or wall/gran/local = style name of this compute command
¢ zero or more keywords may be appended

keyword = pos or vel or id or force or torque or history or contactArea or delta:l
pos = positions of particles in contact (6 values)
vel = velocities of particles in contact (6 values)

id = IDs of particles in contact and a periodicity flag (3 values) or IDs of the mesh, t

force = contact force (3 values)

torque = torque divided by particle diameter (3 wvalues)

history = contact history (# depends on pair style, e.g. 3 shear history values)
contactArea = area of the contact (1 value)

delta = overlap of the contact (1 value)

heatFlux = conductive heat flux of the contact (1 wvalue)

Examples:

compute 1 all pair/gran/local
compute 1 all pair/gran/local pos force
compute 1 all wall/gran/local

Description:

Define a computation that calculates properties of individual pairwise or particle-wall interactions of a
granular pair style. The number of datums generated, aggregated across all processors, equals the number of
pairwise interactions or particle-wall interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute
group, and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined
by the pair_style and pair_coeff commands.

IMPORTANT NOTE: For accessing particle-wall contact data, only mesh walls (see fix mesh) can be used.
For computing particle-wall (compute wall/gran/local), the code will automatically look for a fix wall/gran
command that uses mesh walls. The order of the meshes in the fix wall/gran command is called the mesh id
(starting with 0), and the triangle id reflects the order of the triangles in the STL/VTK file read via the
dedicated fix mesh command. For how to output the trangle id, see "dump mesh/gran/VTK
command"dump.html.

The output pos is the particle positions (6 values) in distance units. Keyword vel will do the same for
velocities. For computing pairwise data, the output id will be the two particle IDs (using this option requires
to use an atom map) and a flag that is 1 for interaction over a periodic boundary and 0 otherwise. For
computing particle-wall data, the output id will be the mesh id, the triangle id and the particle id. The output
force and torque are the contact force and the torque divided by the particle radius, both in force units. Note
that the torque does NOT contain any rolling friction torque. The output history will depend on what this

compute pair/gran/local command 66

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

history represents, according to the granular pair style used. The output contactArea will output the contact
area, in distance”2 units. The output delta will output the overlap (sum of radii - distance between particle
centers) in distance units .The output heatFlux (available only if a fix heat/gran is used to compute heat
fluxes) will output the per-contact conductive heat flux area, in energy/time units.

The data associated to the different keywords is output in the following order: pos, vel, id, force, torque,
history, contactArea, heatFlux. This is independant of the order in which the keywords are specified.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, pair output from the compute property/local command can be combined with data
from this command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns =
the number of keywords. The vector or array can be accessed by any command that uses local values from a
compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

For information on the units of the output, see above.

Restrictions:

Can only be used together with a granular pair style. For accessing particle-wall contact data, only mesh walls
can be used.

Related commands:
dump local, compute property/local, compute pair/local
Default:

By default, all of the outputs keywords (except the heat flux and delta) are activated, i.e. when no keyword is
used, positions velocities, ids, forces, torques, history and contact area are output.

compute wall/gran/local command 67

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute pe/atom command

Syntax:
compute ID group-ID pe/atom keyword ...

¢ ID, group-ID are documented in compute command

® pe/atom = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe/atom
compute 1 all pe/atom pair
compute 1 all pe/atom pair bond

Description:

Define a computation that computes the per-atom potential energy for each atom in a group. See the compute
pe command if you want the potential energy of the entire system.

The per-atom energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no
extra keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral,improper, and
kspace energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

Note that the energy of each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

For an energy contribution produced by a small set of atoms (e.g. 4 atoms in a dihedral or 3 atoms in a Tersoff
3-body interaction), that energy is assigned in equal portions to each atom in the set. E.g. 1/4 of the dihedral
energy to each of the 4 atoms.

The dihedral style charmm style calculates pairwise interactions between 1-4 atoms. The energy contribution
of these terms is included in the pair energy, not the dihedral energy.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and a related
method for PPPM, as specified by the kspace style pppm command. For PPPM, the calcluation requires 1
extra FFT each timestep that per-atom energy is calculated. Thie document describes how the long-range
per-atom energy calculation is performed.

As an example of per-atom potential energy compared to total potential energy, these lines in an input script
should yield the same result in the last 2 columns of thermo output:

compute peratom all pe/atom
compute pe all reduce sum c_peratom
thermo_style custom step temp etotal press pe c_pe

IMPORTANT NOTE: The per-atom energy does not any Lennard-Jones tail corrections invoked by the
pair_modify tail yes command, since those are global contributions to the system energy.

compute pe/atom command 68

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC output options.

The per-atom vector values will be in energy units.
Restrictions:
Related commands:

compute pe, compute stress/atom

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

compute pe/atom command

69

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute pe command

Syntax:
compute ID group-ID pe keyword ...

¢ ID, group-ID are documented in compute command

® pe = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe
compute molPE all pe bond angle dihedral improper

Description:

Define a computation that calculates the potential energy of the entire system of atoms. The specified group
must be "all". See the compute pe/atom command if you want per-atom energies. These per-atom values could
be summed for a group of atoms via the compute reduce command.

The energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no extra
keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral, improper, and kspace
(long-range) energy. If any extra keywords are listed, then only those components are summed to compute the
potential energy.

Various fixes can contribute to the total potential energy of the system. See the doc pages for individual fixes
for details. The thermo option of the compute modify command determines whether these contributions are
added into the computed potential energy. If no keywords are specified the default is yes. If any keywords are
specified, the default is no.

Output info:

This compute calculates a global scalar (the potential energy). This value can be used by any command that
uses a global scalar value from a compute as input. See Section _howto 15 for an overview of
LIGGGHTS(R)-PUBLIC output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute pe/atom

Default: none

compute pe command 70

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute pressure command

Syntax:

compute ID group-ID pressure temp-ID keyword ...

¢ ID, group-ID are documented in compute command

¢ pressure = style name of this compute command

e temp-ID = ID of compute that calculates temperature

¢ zero or more keywords may be appended

¢ keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial

Examples:

compute 1 all pressure myTemp
compute 1 all pressure thermo_temp pair bond

Description:
Define a computation that calculates the pressure of the entire system of atoms. The specified group must be
"all". See the compute stress/atom command if you want per-atom pressure (stress). These per-atom values

could be summed for a group of atoms via the compute reduce command.

The pressure is computed by the formula

J'\'r:[d T _J-V r; ® J;
_ Nkg +Zz e f;

P
vV dV

where N is the number of atoms in the system (see discussion of DOF below), Kb is the Boltzmann constant,
T is the temperature, d is the dimensionality of the system (2 or 3 for 2d/3d), V is the system volume (or area
in 2d), and the second term is the virial, computed within LIGGGHTS(R)-PUBLIC for all pairwise as well as
2-body, 3-body, and 4-body, and long-range interactions. Fixes that impose constraints (e.g. the fix shake
command) also contribute to the virial term.

A symmetric pressure tensor, stored as a 6-element vector, is also calculated by this compute. The 6
components of the vector are ordered xx, yy, 7z, Xy, Xz, yz. The equation for the I,J components (where I and
J =x,y,z) is similar to the above formula, except that the first term uses components of the kinetic energy
tensor and the second term uses components of the virial tensor:

NIV s , N
PIJ _ }_4 k MgV : Uk i n Z I 7 k; f/‘CJ

V V

If no extra keywords are listed, the entire equations above are calculated which include a kinetic energy
(temperature) term and the virial as the sum of pair, bond, angle, dihedral, improper, kspace (long-range), and

compute pressure command 71

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

fix contributions to the force on each atom. If any extra keywords are listed, then only those components are
summed to compute temperature or ke and/or the virial. The virial keyword means include all terms except
the kinetic energy ke.

The temperature and kinetic energy tensor is not calculated by this compute, but rather by the temperature
compute specified with the command. Normally this compute should calculate the temperature of all atoms
for consistency with the virial term, but any compute style that calculates temperature can be used, e.g. one
that excludes frozen atoms or other degrees of freedom.

Note that the N in the first formula above is really degrees-of-freedom divided by d = dimensionality, where
the DOF value is calcluated by the temperature compute. See the various compute temperature styles for
details.

A compute of this style with the ID of "thermo_press" is created when LIGGGHTS(R)-PUBLIC starts up, as
if this command were in the input script:

compute thermo_press all pressure thermo_temp

where "thermo_temp" is the ID of a similarly defined compute of style "temp". See the "thermo_style"
command for more details.

Output info:
This compute calculates a global scalar (the pressure) and a global vector of length 6 (pressure tensor), which
can be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector

values from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be
in pressure units.

Restrictions: none
Related commands:

compute temp, compute stress/atom, thermo _style,

Default: none

compute pressure command 72

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute property/atom command

Syntax:
compute ID group-ID property/atom inputl input2

¢ ID, group-ID are documented in compute command
® property/atom = style name of this compute command
¢ input = one or more atom attributes

possible attributes = id, mol, type, mass,
X, y, 2z, XS, ys, zs, xu, yu, zu, ix, iy, iz,
vx, vy, vz, fx, fy, fz,
g, mux, muy, muz, mu,
radius, diameter, omegax, omegay, omegaz,
angmomx, angmomy, angmomz,
shapex, shapey, shapez,
quatw, quati, quatj, quatk, taox, tqy, tqgz,
endlx, endly, endlz, end2x, end2y, end2z,
cornerlx, cornerly, cornerlz,
corner2x, corner2y, corner2z,
corner3x, corner3y, corner3z,
i_name, d_name

id = atom ID
mol = molecule ID
type = atom type

mass = atom mass
X,y,2z = unscaled atom coordinates
Xs,ys,zs = scaled atom coordinates

Xu,vyu,zu = unwrapped atom coordinates

ix,iy,iz = box image that the atom is in

vx,vy,vz = atom velocities

fx,fy,fz = forces on atoms

g = atom charge

mux,muy,muz = orientation of dipole moment of atom

mu = magnitude of dipole moment of atom

radius,diameter = radius,diameter of spherical particle

omegax, omegay,omegaz = angular velocity of spherical particle
angmomx, angmomy, angmomz = angular momentum of aspherical particle
shapex, shapey, shapez = 3 diameters of aspherical particle

quatw, quati, quatj,quatk = quaternion components for aspherical or body particles
tax,tqy,tgz = torque on finite-size particles

endl2x, endl2y, endl2z = end points of line segment

conerl23x, cornerl23y, cornerl23z = corner points of triangle
i_name = custom integer vector with name

d_name = custom integer vector with name

Examples:

compute 1 all property/atom xs vx fx mux
compute 2 all property/atom type
compute 1 all property/atom ix iy iz

Description:

Define a computation that simply stores atom attributes for each atom in the group. This is useful so that the
values can be used by other output commands that take computes as inputs. See for example, the compute

compute property/atom command 73

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

reduce, fix ave/atom, fix ave/histo, fix ave/spatial, and atom-style variable commands.

The list of possible attributes is the same as that used by the dump custom command, which describes their
meaning, with some additional quantities that are only defined for certain atom styles. Basically, this list gives
your input script access to any per-atom quantity stored by LIGGGHTS(R)-PUBLIC.

The values are stored in a per-atom vector or array as discussed below. Zeroes are stored for atoms not in the
specified group or for quantities that are not defined for a particular particle in the group (e.g. shapex if the
particle is not an ellipsoid).

The additional quantities only accessible via this command, and not directly via the dump custom command,
are as follows.

Shapex, shapey, and shapez are defined for ellipsoidal particles and define the 3d shape of each particle.

Quatw, quati, quatj, and quatk are defined for ellipsoidal particles and body particles and store the 4-vector
quaternion representing the orientation of each particle. See the set command for an explanation of the
quaternion vector.

EndlIx, endly, endlz, end2x, end2y, end2z, are defined for line segment particles and define the end points of
each line segment.

Cornerlx, cornerly, cornerlz, corner2x, corner2y, corner2z, corner3x, corner3y, corner3z, are defined for
triangular particles and define the corner points of each triangle.

The i_name and d_name attributes refer to custom integer and floating-point properties that have been added
to each atom via the fix property/atom command. When that command is used specific names are given to
each attribute which are what is specified as the "name" portion of i_name or d_name.

Output info:

This compute calculates a per-atom vector or per-atom array depending on the number of input values. If a
single input is specified, a per-atom vector is produced. If two or more inputs are specified, a per-atom array is
produced where the number of columns = the number of inputs. The vector or array can be accessed by any
command that uses per-atom values from a compute as input. See this section for an overview of
LIGGGHTS(R)-PUBLIC output options.

The vector or array values will be in whatever units the corresponding attribute is in, e.g. velocity units for vx,
charge units for g, etc.

Restrictions: none

Related commands:

dump custom, compute reduce, fix ave/atom, fix ave/spatial, fix_property/atom

Default: none

compute property/atom command 74

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute property/local command

Syntax:

compute ID group-ID property/local inputl input?2

¢ ID, group-ID are documented in compute command
e property/local = style name of this compute command
¢ input = one or more attributes

possible attributes = natoml natom2 ntypel ntype2
patoml patom2 ptypel ptype2
batoml batom2 btype

natoml, natom2 = IDs of 2 atoms in each pair (within neighbor cutoff)
ntypel, ntype2 = type of 2 atoms in each pair (within neighbor cutoff)
patoml, patom2 = IDs of 2 atoms in each pair (within force cutoff)

ptypel, ptype2 = type of 2 atoms in each pair (within force cutoff)
batoml, batom2 = IDs of 2 atoms in each bond
btype = bond type of each bond

Examples:

compute 1 all property/local btype batoml batom?2
compute 1 all property/local atype aatom?2

Description:

Define a computation that stores the specified attributes as local data so it can be accessed by other output
commands. If the input attributes refer to bond information, then the number of datums generated, aggregated
across all processors, equals the number of bonds in the system. Ditto for pairs.

If multiple input attributes are specified then they must all generate the same amount of information, so that
the resulting local array has the same number of rows for each column. This means that only bond attributes
can be specified together.

If the inputs are pair attributes, the local data is generated by looping over the pairwise neighbor list. Info
about an individual pairwise interaction will only be included if both atoms in the pair are in the specified
compute group. For natoml and natom?2, all atom pairs in the neighbor list are considered (out to the neighbor
cutoff = force cutoff + neighbor skin). For patomlI and patom?2, the distance between the atoms must be less
than the force cutoff distance for that pair to be included, as defined by the pair_style and pair_coeff
commands.

If the inputs are bond, etc attributes, the local data is generated by looping over all the atoms owned on a
processor and extracting bond, etc info. For bonds, info about an individual bond will only be included if both
atoms in the bond are in the specified compute group. Likewise for angles, dihedrals, etc.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries
within the local vector or array from one timestep to the next. The only consistency that is guaranteed is that
the ordering on a particular timestep will be the same for local vectors or arrays generated by other compute
commands. For example, output from the compute bond/local command can be combined with bond atom
indices from this command and output by the dump local command in a consistent way.

compute property/local command 75

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The natomlI and natom2, or patoml and patom?2 attributes refer to the atom IDs of the 2 atoms in each
pairwise interaction computed by the pair_style command. The ntypel and ntype2, or ptypel and ptype2
attributes refer to the atom types of the 2 atoms in each pairwise interaction.

IMPORTANT NOTE: For pairs, if two atoms L,J are involved in 1-2, 1-3, 1-4 interactions within the
molecular topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor
list, and will not be part of the local data created by this command. More specifically, this may be true of IJ
pairs with a weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting
factors for 1-2, 1-3, and 1-4 pairwise interactions are set by the special bonds command.

The batoml and batom? attributes refer to the atom IDs of the 2 atoms in each bond. The btype attribute refers
to the type of the bond, from 1 to Nbtypes = # of bond types. The number of bond types is defined in the data
file read by the read data command.

Output info:

This compute calculates a local vector or local array depending on the number of input values. The length of
the vector or number of rows in the array is the number of bonds. If a single input is specified, a local vector is
produced. If two or more inputs are specified, a local array is produced where the number of columns = the
number of inputs. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands:

dump local, compute reduce

Default: none

compute property/local command 76

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute property/molecule command

Syntax:
compute ID group-ID property/molecule inputl input2 ...

¢ ID, group-ID are documented in compute command
e property/molecule = style name of this compute command
¢ input = one or more attributes

possible attributes = mol cout
mol = molecule ID
count = # of atoms in molecule

Examples:

compute 1 all property/molecule mol

Description:

Define a computation that stores the specified attributes as global data so it can be accessed by other output
commands and used in conjunction with other commands that generate per-molecule data, such as compute
com/molecule and compute msd/molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

The mol attribute is the molecule ID. This attribute can be used to produce molecule IDs as labels for
per-molecule datums generated by other computes or fixes when they are output to a file, e.g. by the fix
ave/time command.

The count attribute is the number of atoms in the molecule.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length
of the vector or number of rows in the array is the number of molecules. If a single input is specified, a global
vector is produced. If two or more inputs are specified, a global array is produced where the number of
columns = the number of inputs. The vector or array can be accessed by any command that uses global values
from a compute as input. See this section for an overview of LIGGGHTS(R)-PUBLIC output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands: none

Default: none

compute property/molecule command 77

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute rdf command

Syntax:
compute ID group-ID rdf Nbin itypel Jjtypel itype2 jtype2 ...

¢ ID, group-ID are documented in compute command

¢ rdf = style name of this compute command

¢ Nbin = number of RDF bins

¢ itypeN = central atom type for Nth RDF histogram (see asterisk form below)

¢ jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below)

Examples:

compute 1 all rdf 100

compute 1 all rdf 100 1 1

compute 1 all rdf 100 * 3

compute 1 fluid rdf 500 1 1 1 2 2 1 2 2
compute 1 fluid rdf 500 1*3 2 5 *10
Description:

Define a computation that calculates the radial distribution function (RDF), also called g(r), and the
coordination number for a group of particles. Both are calculated in histogram form by binning pairwise
distances into Nbin bins from 0.0 to the maximum force cutoff defined by the pair_style command. The bins
are of uniform size in radial distance. Thus a single bin encompasses a thin shell of distances in 3d and a thin
ring of distances in 2d.

IMPORTANT NOTE: If you have a bonded system, then the settings of special bonds command can remove
pairwise interactions between atoms in the same bond, angle, or dihedral. This is the default setting for the
special bonds command, and means those pairwise interactions do not appear in the neighbor list. Because
this fix uses the neighbor list, it also means those pairs will not be included in the RDF. One way to get
around this, is to write a dump file, and use the rerun command to compute the RDF for snapshots in the
dump file. The rerun script can use a special bonds command that includes all pairs in the neighbor list.

The itypeN and jtypeN arguments are optional. These arguments must come in pairs. If no pairs are listed, then
a single histogram is computed for g(r) between all atom types. If one or more pairs are listed, then a separate
histogram is generated for each itype,jtype pair.

The itypeN and jtypeN settings can be specified in one of two ways. An explicit numeric value can be used, as
in the 4th example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk
means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

If both itypeN and jtypeN are single values, as in the 4th example above, this means that a g(r) is computed
where atoms of type itypeN are the central atom, and atoms of type jtypeN are the distribution atom. If either
itypeN and jtypeN represent a range of values via the wild-card asterisk, as in the 5th example above, this
means that a g(r) is computed where atoms of any of the range of types represented by ifypeN are the central
atom, and atoms of any of the range of types represented by jfrypeN are the distribution atom.

compute rdf command 78

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Pairwise distances are generated by looping over a pairwise neighbor list, just as they would be in a pair_style
computation. The distance between two atoms I and J is included in a specific histogram if the following
criteria are met:

e atoms L,J are both in the specified compute group

e the distance between atoms 1,J is less than the maximum force cutoff
e the type of the I atom matches itypeN (one or a range of types)

e the type of the J atom matches jtypeN (one or a range of types)

It is OK if a particular pairwise distance is included in more than one individual histogram, due to the way the
itypeN and jtypeN arguments are specified.

The g(r) value for a bin is calculated from the histogram count by scaling it by the idealized number of how
many counts there would be if atoms of type jtypeN were uniformly distributed. Thus it involves the count of
itypeN atoms, the count of jtypeN atoms, the volume of the entire simulation box, and the volume of the bin's
thin shell in 3d (or the area of the bin's thin ring in 2d).

A coordination number coord(r) is also calculated, which is the number of atoms of type jtypeN within the
current bin or closer, averaged over atoms of type ifypeN. This is calculated as the area- or volume-weighted
sum of g(r) values over all bins up to and including the current bin, multiplied by the global average volume
density of atoms of type jtypeN.

The simplest way to output the results of the compute rdf calculation to a file is to use the fix ave/time
command, for example:

compute myRDF all rdf 50
fix 1 all ave/time 100 1 100 c_myRDF file tmp.rdf mode vector

Output info:

This compute calculates a global array with the number of rows = Nbins, and the number of columns = 1 +
2*Npairs, where Npairs is the number of LJ pairings specified. The first column has the bin coordinate (center
of the bin), Each successive set of 2 columns has the g(r) and coord(r) values for a specific set of irypeN
versus jtypeN interactions, as described above. These values can be used by any command that uses a global
values from a compute as input. See Section _howto 15 for an overview of LIGGGHTS(R)-PUBLIC output
options.

The array values calculated by this compute are all "intensive".

The first column of array values will be in distance units. The g(r) columns of array values are normalized
numbers >= 0.0. The coordination number columns of array values are also numbers >= 0.0.

Restrictions:

The RDF is not computed for distances longer than the force cutoff, since processors (in parallel) don't know
about atom coordinates for atoms further away than that distance. If you want an RDF for larger distances,
you can use the rerun command to post-process a dump file. The definition of g(r) used by
LIGGGHTS(R)-PUBLIC is only appropriate for characterizing atoms that are uniformly distributed
throughout the simulation cell. In such cases, the coordination number is still correct and meaningful. As an
example, if a large simulation cell contains only one atom of type itypeN and one of jtypeN, then g(r) will
register an arbitrarily large spike at whatever distance they happen to be at, and zero everywhere else. coord(r)
will show a step change from zero to one at the location of the spike in g(r).

Related commands:

compute rdf command 79

fix ave/time

Default: none

compute rdf command

LIGGGHTS(R)-PUBLIC Users Manual

80

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute reduce command

compute reduce/region command

Syntax:
compute ID group-ID style arg mode inputl input2 ... keyword args

¢ ID, group-ID are documented in compute command
o style = reduce or reduce/region

reduce arg = none
reduce/region arg = region-ID
region-ID = ID of region to use for choosing atoms
® mode = sum or min or max or ave
¢ one or more inputs can be listed
® input =X, y, z, VX, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f ID[N], v_name

X,v,2,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
c_ID = per-atom or local vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom or local array calculated by a compute with ID
f_ID = per-atom or local vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom or local array calculated by a fix with ID
v_name = per-atom vector calculated by an atom-style variable with name

¢ zero or more keyword/args pairs may be appended
¢ keyword = replace

replace args = vecl vec2

vecl = reduced value from this input vector will be replaced

vec2 = replace it with vecl[N] where N is index of max/min value from vec2
Examples:
compute 1 all reduce sum c_force
compute 1 all reduce/region subbox sum c_force
compute 2 all reduce min c_press2 f_ave v_myKE
compute 3 fluid reduce max c_indexl c_index2 c_dist replace 1 3 replace 2 3
Description:

Define a calculation that "reduces" one or more vector inputs into scalar values, one per listed input. The
inputs can be per-atom or local quantities; they cannot be global quantities. Atom attributes are per-atom
quantities, computes and fixes may generate any of the three kinds of quantities, and atom-style variables
generate per-atom quantities. See the variable command and its special functions which can perform the same
operations as the compute reduce command on global vectors.

The reduction operation is specified by the mode setting. The sum option adds the values in the vector into a
global total. The min or max options find the minimum or maximum value across all vector values. The ave
setting adds the vector values into a global total, then divides by the number of values in the vector.

Each listed input is operated on independently. For per-atom inputs, the group specified with this command
means only atoms within the group contribute to the result. For per-atom inputs, if the compute reduce/region
command is used, the atoms must also currently be within the region. Note that an input that produces
per-atom quantities may define its own group which affects the quantities it returns. For example, if a

compute reduce command 81

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

compute is used as an input which generates a per-atom vector, it will generate values of 0.0 for atoms that are
not in the group specified for that compute.

Each listed input can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an atom-style variable.

The atom attribute values (X,y,z,vx,vy,vz,fx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script.
Computes can generate per-atom or local quantities. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their

own compute styles and add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. Fixes
can generate per-atom or local quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute reduce references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write
code for their own fix style and add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. It must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and
various per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a
very general means of generating per-atom quantities to reduce.

If the replace keyword is used, two indices vecl and vec2 are specified, where each index ranges from 1 to the
of input values. The replace keyword can only be used if the mode is min or max. It works as follows. A
min/max is computed as usual on the vec2 input vector. The index N of that value within vec?2 is also stored.
Then, instead of performing a min/max on the vec! input vector, the stored index is used to select the Nth
element of the vec/ vector.

Thus, for example, if you wish to use this compute to find the bond with maximum stretch, you can do it as
follows:

compute 1 all property/local batoml batom2

compute 2 all bond/local dist

compute 3 all reduce max c_1[1] c_1[2] c_2 replace 1 3 replace 2 3
thermo_style custom step temp c_3[1] c_3[2] c_31[3]

The first two input values in the compute reduce command are vectors with the IDs of the 2 atoms in each
bond, using the compute property/local command. The last input value is bond distance, using the compute
bond/local command. Instead of taking the max of the two atom ID vectors, which does not yield useful
information in this context, the replace keywords will extract the atom IDs for the two atoms in the bond of
maximum stretch. These atom IDs and the bond stretch will be printed with thermodynamic output.

If a single input is specified this compute produces a global scalar value. If multiple inputs are specified, this
compute produces a global vector of values, the length of which is equal to the number of inputs specified.

As discussed below, for sum mode, the value(s) produced by this compute are all "extensive", meaning their
value scales linearly with the number of atoms involved. If normalized values are desired, this compute can be
accessed by the thermo_style custom command with thermo _modify norm yes set as an option. Or it can be
accessed by a variable that divides by the appropriate atom count.

compute reduce/region command 82

LIGGGHTS(R)-PUBLIC Users Manual

Output info:

This compute calculates a global scalar if a single input value is specified or a global vector of length N where
N is the number of inputs, and which can be accessed by indices 1 to N. These values can be used by any
command that uses global scalar or vector values from a compute as input. See Section howto 15 for an

overview of LIGGGHTS(R)-PUBLIC output options.

All the scalar or vector values calculated by this compute are "intensive", except when the sum mode is used
on per-atom or local vectors, in which case the calculated values are "extensive".

The scalar or vector values will be in whatever units the quantities being reduced are in.
Restrictions: none

Related commands:

compute, fix, variable

Default: none

compute reduce/region command 83

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute rigid command

compute multisphere command

Syntax:
compute ID group-ID rigid (or multisphere) property property_name

¢ ID, group-ID are documented in compute command

¢ property = obligatory keyword

® property_name = xcm Or vcm Or fcm Or torque or quat or angmom or omega or density or type or id or
masstotal or inertia or ex_space or ey_space or ez_space

xcm = body position (based on center of mass) (3 values)
vem = body velocity (based on center of mass) (3 values)
fcm = body force (based on center of mass) (3 values)
torque = body torque (based on center of mass) (3 values)
quat = body quaternion (based on center of mass) (4 values)
angmom = body angular momentum (based on center of mass) (3 values)
omega = body angular velocity (based on center of mass) (3 values)

density = body density (1 value)
atomtype = atom type (material type) of the rigid body (1 wvalue)

clumptype = multi-sphere type as defined in fix paticleteplate/multisphere (1 value)

id = body id (1 value)

masstotal = body mass (1 value)

inertia = body intertia (based on center of mass, around ex_space, ey_space, ez_space) (
ex_space, ey_space, ez_space = eigensystem of the body (based on center of mass) (3 valu

Examples:

compute xcm all rigid property xcm
compute xcm all multisphere property xcm

Description:

Define a computation that calculates properties of individual multi-sphere bodies (clumps) in the similation

that were defined via fix particletemplate/multisphere

The local data stored by this command is generated by looping over the all the bodies owned on a process.

IMPORTANT NOTE: the group-ID is ignored for this command, as group data is atom-based, not
clump-based.

Output info:

This compute calculates a local vector or local array depending on the length of the data (see above). The
vector or array can be accessed by any command that uses local values from a compute as input. See this
section for an overview of LIGGGHTS(R)-PUBLIC output options.

Restrictions:

Can only be used together with a granular pair style. For accessing particle-wall contact data, only mesh walls
can be used.

compute rigid command 84

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Related commands:

dump local, compute property/local, compute pair/local

Default: none

compute multisphere command

85

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute slice command

Syntax:
compute ID group-ID slice Nstart Nstop Nskip inputl input2 ...

¢ ID, group-ID are documented in compute command

¢ slice = style name of this compute command

¢ Nstart = starting index within input vector(s)

¢ Nstop = stopping index within input vector(s)

¢ Nskip = extract every Nskip elements from input vector(s)
¢ input = c_ID, c_ID[N], f_ID, f_ID[N]

c_ID = global vector calculated by a compute with ID

c_ID[I] = Ith column of global array calculated by a compute with ID
f_ID = global vector calculated by a fix with ID
f_ID[I] = Ith column of global array calculated by a fix with ID

Examples:

compute 1 all slice 1 100 10 c_msdmol[4]
compute 1 all slice 301 400 1 c_msdmol([4]

Description:

Define a calculation that "slices" one or more vector inputs into smaller vectors, one per listed input. The
inputs can be global quantities; they cannot be per-atom or local quantities. Computes and fixes may generate
any of the three kinds of quantities. Variables do not generate global vectors. The group specified with this
command is ignored.

The values extracted from the input vector(s) are determined by the Nstart, Nstop, and Nskip parameters. The
elements of an input vector of length N are indexed from 1 to N. Starting at element Nstart, every Mth
element is extracted, where M = Nskip, until element Nstop is reached. The extracted quantities are stored as a
vector, which is typically shorter than the input vector.

Each listed input is operated on independently to produce one output vector. Each listed input must be a
global vector or column of a global array calculated by another compute or fix.

If an input value begins with "c_", a compute ID must follow which has been previously defined in the input
script and which generates a global vector or array. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is
appended, the Ith column of the array calculated by the compute is used. Users can also write code for their

own compute styles and add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script and
which generates a global vector or array. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute slice references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write

code for their own fix style and add them to ILIGGGHTS(R)-PUBLIC.

If a single input is specified this compute produces a global vector, even if the length of the vector is 1. If

compute slice command 86

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

multiple inputs are specified, then a global array of values is produced, with the number of columns equal to
the number of inputs specified.

Output info:

This compute calculates a global vector if a single input value is specified or a global array with N columns
where N is the number of inputs. The length of the vector or the number of rows in the array is equal to the
number of values extracted from each input vector. These values can be used by any command that uses
global vector or array values from a compute as input. See this section for an overview of
LIGGGHTS(R)-PUBLIC output options.

The vector or array values calculated by this compute are simply copies of values generated by computes or
fixes that are input vectors to this compute. If there is a single input vector of intensive and/or extensive
values, then each value in the vector of values calculated by this compute will be "intensive" or "extensive",
depending on the corresponding input value. If there are multiple input vectors, and all the values in them are
intensive, then the array values calculated by this compute are "intensive". If there are multiple input vectors,
and any value in them is extensive, then the array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none

Related commands:

compute, fix, compute reduce

Default: none

compute slice command 87

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute stress/atom command

Syntax:
compute ID group-ID stress/atom keyword ...

¢ ID, group-ID are documented in compute command

e stress/atom = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial

Examples:

compute 1 mobile stress/atom
compute 1 all stress/atom pair bond

Description:
Define a computation that computes the symmetric per-atom stress tensor for each atom in a group. The tensor
for each atom has 6 components and is stored as a 6-element vector in the following order: xx, yy, zz, Xy, Xz,

yz. See the compute pressure command if you want the stress tensor (pressure) of the entire system.

The stress tensor for atom / is given by the following formula, where a and b take on values x,y,z to generate
the 6 components of the symmetric tensor:

Np
Sy = — |muvavp %Z (r1, FY, + 12, F3,) éZ{FllnFlh b 1o, Fo,)
==l = =1
1 Ny Ny
—Z O TG o W £) ZU[-.FH. oo F2y, + T3, Fa, + 14, Fy,)
Ni Ny
e Z 181, + T2, Foy + T3, Fay + 14, Fy,) + Kspace(ry,, F; Z gl I

The first term is a kinetic energy contribution for atom /. The second term is a pairwise energy contribution
where n loops over the Np neighbors of atom /, r/ and r2 are the positions of the 2 atoms in the pairwise
interaction, and F/ and F2 are the forces on the 2 atoms resulting from the pairwise interaction. The third term
is a bond contribution of similar form for the Nb bonds which atom / is part of. There are similar terms for the
Na angle, Nd dihedral, and Ni improper interactions atom / is part of. There is also a term for the KSpace
contribution from long-range Coulombic interactions, if defined. Finally, there is a term for the Nf fixes that
apply internal constraint forces to atom /. Currently, only the fix shake and fix rigid commands contribute to
this term.

IMPORTANT NOTE: For granular systems, this formular neglects the contribution of average velocity in the
kinetic energy contribution. This is corrected in the compute ave/euler command (currently no doc available).

compute stress/atom command 88

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

As the coefficients in the formula imply, a virial contribution produced by a small set of atoms (e.g. 4 atoms
in a dihedral or 3 atoms in a Tersoff 3-body interaction) is assigned in equal portions to each atom in the set.
E.g. 1/4 of the dihedral virial to each of the 4 atoms, or 1/3 of the fix virial due to SHAKE constraints applied
to atoms in a a water molecule via the fix shake command.

If no extra keywords are listed, all of the terms in this formula are included in the per-atom stress tensor. If
any extra keywords are listed, only those terms are summed to compute the tensor. The virial keyword means
include all terms except the kinetic energy ke.

Note that the stress for each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

The dihedral style charmm style calculates pairwise interactions between 1-4 atoms. The virial contribution
of these terms is included in the pair virial, not the dihedral virial.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and by the
methodology described in (Sirk) for PPPM. The choice of KSpace solver is specified by the kspace style
pppm command. Note that for PPPM, the calcluation requires 6 extra FFTs each timestep that per-atom stress
is calculated. Thus it can significantly increase the cost of the PPPM calculation if it is needed on a large
fraction of the simulation timesteps.

Note that as defined in the formula, per-atom stress is the negative of the per-atom pressure tensor. It is also
really a stress*volume formulation, meaning the computed quantity is in units of pressure*volume. It would
need to be divided by a per-atom volume to have units of stress (pressure), but an individual atom's volume is
not well defined or easy to compute in a deformed solid or a liquid. Thus, if the diagonal components of the
per-atom stress tensor are summed for all atoms in the system and the sum is divided by dV, where d =
dimension and V is the volume of the system, the result should be -P, where P is the total pressure of the
system.

These lines in an input script for a 3d system should yield that result. L.e. the last 2 columns of thermo output
will be the same:

compute peratom all stress/atom

compute p all reduce sum c_peratom[l] c_peratom[2] c_peratom[3]
variable press equal —(c_plll+c_pl[2]+c_pl[3]1)/(3*vol)
thermo_style custom step temp etotal press v_press

Output info:

This compute calculates a per-atom array with 6 columns, which can be accessed by indices 1-6 by any
command that uses per-atom values from a compute as input. See Section _howto 15 for an overview of
LIGGGHTS(R)-PUBLIC output options.

The per-atom array values will be in pressure*volume units as discussed above.

Restrictions: none

Related commands:

compute pe, compute pressure

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

compute stress/atom command 89

LIGGGHTS(R)-PUBLIC Users Manual
(Sirk) Sirk, Moore, Brown, J Chem Phys, 138, 064505 (2013).

compute stress/atom command

90

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

compute voronoi/atom command

Syntax:

compute ID group-ID voronoi/atom keyword arg ...

¢ ID, group-ID are documented in compute command

¢ voronoi/atom = style name of this compute command

¢ zero or more keyword/value pairs may be appended

¢ keyword = only_group or surface or radius or edge_histo or edge_threshold or face_threshold

only_group = no arg

surface arg = sgroup—-1D
sgroup—-ID = compute the dividing surface between group-ID and sgroup—-ID
this keyword adds a third column to the compute output
radius arg = v_r
v_r = radius atom style variable for a poly-disperse voronoi tessellation

edge_histo arg = maxedge

maxedge = maximum number of voronoi cell edges to be accounted in the histogram
edge_threshold arg = minlength

minlength = minimum length for an edge to be counted
face_threshold arg = minarea

minarea = minimum area for a face to be counted

Examples:

compute 1 all voronoi/atom

compute 2 precipitate voronoi/atom surface matrix
compute 3b precipitate voronoi/atom radius v_r
compute 4 solute voronoi/atom only_group

Description:

Define a computation that calculates the Voronoi tessellation of the atoms in the simulation box. The
tessellation is calculated using all atoms in the simulation, but non-zero values are only stored for atoms in the

group.

By default two quantities per atom are calculated by this compute. The first is the volume of the Voronoi cell
around each atom. Any point in an atom's Voronoi cell is closer to that atom than any other. The second is the
number of faces of the Voronoi cell, which is also the number of nearest neighbors of the atom in the middle
of the cell.

If the only_group keyword is specified the tessellation is performed only with respect to the atoms contained
in the compute group. This is equivalent to deleting all atoms not contained in the group prior to evaluating
the tessellation.

If the surface keyword is specified a third quantity per atom is computed: the voronoi cell surface of the given
atom. surface takes a group ID as an argument. If a group other than all is specified, only the voronoi cell
facets facing a neighbor atom from the specified group are counted towards the surface area.

In the example above, a precipitate embedded in a matrix, only atoms at the surface of the precipitate will
have non-zero surface area, and only the outward facing facets of the voronoi cells are counted (the hull of the
precipitate). The total surface area of the precipitate can be obtained by running a "reduce sum" compute on
c_2[3]

compute voronoi/atom command 91

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

If the radius keyword is specified with an atom style variable as the argument, a poly-disperse voronoi
tessellation is performed. Examples for radius variables are

variable rl atom (type==1)*0.1+(type==2)*0.4
compute radius all property/atom radius
variable r2 atom c_radius

Here v_rl specifies a per-type radius of 0.1 units for type 1 atoms and 0.4 units for type 2 atoms, and v_r2
accesses the radius property present in atom_style sphere for granular models.

The edge_histo keyword activates the compilation of a histogram of number of edges on the faces of the
voronoi cells in the compute group. The argument maxedge of the this keyword is the largest number of edges
on a single voronoi cell face expected to occur in the sample. This keyword adds the generation of a global
vector with maxedge+1 entries. The last entry in the vector contains the number of faces with with more than
maxedge edges. Since the polygon with the smallest amount of edges is a triangle, entries 1 and 2 of the
vector will always be zero.

The edge_threshold and face_threshold keywords allow the suppression of edges below a given minimum
length and faces below a given minimum area. Ultra short edges and ultra small faces can occur as artifacts of
the voronoi tessellation. These keywords will affect the neighbor count and edge histogram outputs.

The Voronoi calculation is performed by the freely available Yoro++ package, written by Chris Rycroft at UC
Berkeley and LBL, which must be installed on your system when building LIGGGHTS(R)-PUBLIC for use
with this compute. See instructions on obtaining and installing the Voro++ software in the
src/VORONOI/README file.

IMPORTANT NOTE: The calculation of Voronoi volumes is performed by each processor for the atoms it
owns, and includes the effect of ghost atoms stored by the processor. This assumes that the Voronoi cells of
owned atoms are not affected by atoms beyond the ghost atom cut-off distance. This is usually a good
assumption for liquid and solid systems, but may lead to underestimation of Voronoi volumes in low density
systems. By default, the set of ghost atoms stored by each processor is determined by the cutoff used for
pair_style interactions. The cutoff can be set explicitly via the communicate cutoff command.

IMPORTANT NOTE: The Voro++ package performs its calculation in 3d. This should still work for a 2d
LIGGGHTS(R)-PUBLIC simulation, to effectively compute Voronoi "areas", so long as the z-dimension of
the box is roughly the same (or smaller) compared to the separation of the atoms. Typical values for the z box
dimensions in a 2d LIGGGHTS(R)-PUBLIC model are -0.5 to 0.5, which satisfies the criterion for most units
systems. Note that you define the z extent of the simulation box for 2d simulations when using the create box
or read data commands.

Output info:

This compute calculates a per-atom array with 2 columns. The first column is the Voronoi volume, the second
is the neighbor count, as described above. These values can be accessed by any command that uses per-atom
values from a compute as input. See Section howto 15 for an overview of LIGGGHTS(R)-PUBLIC output

options.

The Voronoi cell volume will be in distance units cubed.

Restrictions:

This compute is part of the VORONOI package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with
that package. See the Making I IGGGHTS(R)-PUBLIC section for more info.

Related commands:

compute voronoi/atom command 92

http://math.lbl.gov/voro++

LIGGGHTS(R)-PUBLIC Users Manual
dump custom

Default: none

compute voronoi/atom command

93

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

create_atoms command
Syntax:
create_atoms type style args keyword values

¢ type = atom type (1-Ntypes) of atoms to create
¢ style = box or region or single or random

box args = none
region args = region-ID
region-ID = atoms will only be created if contained in the region
single args = X y z
X,y,2z = coordinates of a single atom (distance units)

random args = N seed region-ID
N = number of atoms to create
seed = random # seed (positive integer)
region-ID = create atoms within this region, use NULL for entire simulation box
¢ zero or more keyword/value pairs may be appended

¢ keyword = basis or remap or units

basis values = M itype
M = which basis atom
itype = atom type (1-N) to assign to this basis atom
remap value = yes Or no
units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

Examples:

create_atoms 1 box
create_atoms 3 region regsphere basis 2 3
create_atoms 3 single 0 0 5

Description:

This command creates atoms on a lattice, or a single atom, or a random collection of atoms, as an alternative
to reading in their coordinates explicitly via a read data or read restart command. A simulation box must
already exist, which is typically created via the create box command. Before using this command, a lattice
must also be defined using the lattice command. The only exceptions are for the single style with units = box
or the random style.

For the box style, the create_atoms command fills the entire simulation box with atoms on the lattice. If your
simulation box is periodic, you should insure its size is a multiple of the lattice spacings, to avoid unwanted
atom overlaps at the box boundaries. If your box is periodic and a multiple of the lattice spacing in a particular
dimension, LIGGGHTS(R)-PUBLIC is careful to put exactly one atom at the boundary (on either side of the
box), not zero or two.

For the region style, the geometric volume is filled that is inside the simulation box and is also consistent with
the region volume. See the region command for details. Note that a region can be specified so that its
"volume" is either inside or outside a geometric boundary. Also note that if your region is the same size as a
periodic simulation box (in some dimension), LIGGGHTS(R)-PUBLIC does not implement the same logic as
with the box style, to insure exactly one atom at the boundary. if this is what you desire, you should either use
the box style, or tweak the region size to get precisely the atoms you want.

create_atoms command 94

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

For the single style, a single atom is added to the system at the specified coordinates. This can be useful for
debugging purposes or to create a tiny system with a handful of atoms at specified positions.

For the random style, N atoms are added to the system at randomly generated coordinates, which can be
useful for generating an amorphous system. The atoms are created one by one using the speficied random
number seed, resulting in the same set of atom coordinates, independent of how many processors are being
used in the simulation. If the region-ID argument is specified as NULL, then the created atoms will be
anywhere in the simulation box. If a region-ID is specified, a geometric volume is filled that is inside the
simulation box and is also consistent with the region volume. See the region command for details. Note that a
region can be specified so that its "volume" is either inside or outside a geometric boundary.

IMPORTANT NOTE: The atoms generated by the random style will typically be highly overlapped which
will cause many interatomic potentials to compute large energies and forces. Thus you should either perform
an energy minimization or run dynamics with fix nve/limit to equilibrate such a system, before running
normal dynamics.

The basis keyword specifies an atom type that will be assigned to specific basis atoms as they are created. See
the lattice command for specifics on how basis atoms are defined for the unit cell of the lattice. By default, all
created atoms are assigned the argument fype as their atom type.

The remap keyword only applies to the single style. If it is set to yes, then if the specified position is outside
the simulation box, it will mapped back into the box, assuming the relevant dimensions are periodic. If it is set
to no, no remapping is done and no atom is created if its position is outside the box.

The units keyword determines the meaning of the distance units used to specify the coordinates of the one
atom created by the single style. A box value selects standard distance units as defined by the units command,
e.g. Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings.

Note that this command adds atoms to those that already exist. By using the create_atoms command multiple
times, multiple sets of atoms can be added to the simulation. For example, interleaving create_atoms with
lattice commands specifying different orientations, grain boundaries can be created. By using the
create_atoms command in conjunction with the delete atoms command, reasonably complex geometries can
be created. The create_atoms command can also be used to add atoms to a system previously read in from a
data or restart file. In all these cases, care should be taken to insure that new atoms do not overlap existing
atoms inappropriately. The delete atoms command can be used to handle overlaps.

Atom IDs are assigned to created atoms in the following way. The collection of created atoms are assigned
consecutive IDs that start immediately following the largest atom ID existing before the create_atoms
command was invoked. When a simulation is performed on different numbers of processors, there is no
guarantee a particular created atom will be assigned the same ID.

Aside from their ID, atom type, and xyz position, other properties of created atoms are set to default values,
depending on which quantities are defined by the chosen atom style. See the atom style command for more
details. See the set and yelocity commands for info on how to change these values.

e charge = 0.0

¢ diameter = 1.0

® shape =0.00.0 0.0

e density = 1.0

® volume = 1.0

e velocity = 0.0 0.0 0.0

e angular velocity = 0.0 0.0 0.0

¢ angular momentum = 0.0 0.0 0.0
e quaternion = (1,0,0,0)

create_atoms command 95

LIGGGHTS(R)-PUBLIC Users Manual

® bonds = none

Note that the sphere atom style sets the default particle diameter to 1.0 as well as the density. This means the
mass for the particle is not 1.0, but is PI/6 * diameter"3 = 0.5236.

Note that the ellipsoid atom style sets the default particle shape to (0.0 0.0 0.0) and the density to 1.0 which
means it is a point particle, not an ellipsoid, and has a mass of 1.0.

The set command can be used to override many of these default settings.
Restrictions:

An atom_style must be previously defined to use this command.
Related commands:

lattice, region, create box, read data, read restart

Default:

The default for the basis keyword is that all created atoms are assigned the argument fype as their atom type.
The default for remap = no and for units = lattice.

create_atoms command 96

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

create_box command

Syntax:
create_box N region-ID

¢ N =# of atom types to use in this simulation
¢ region-ID = ID of region to use as simulation domain

Examples:
create_box 2 mybox
Description:

This command creates a simulation box based on the specified region. Thus a region command must first be
used to define a geometric domain.

The argument N is the number of atom types that will be used in the simulation.

If the region is not of style prism, then LIGGGHTS(R)-PUBLIC encloses the region (block, sphere, etc) with
an axis-aligned orthogonal bounding box which becomes the simulation domain.

If the region is of style prism, LIGGGHTS(R)-PUBLIC creates a non-orthogonal simulation domain shaped
as a parallelepiped with triclinic symmetry. As defined by the region prism command, the parallelepiped has
its "origin" at (xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by A =
(xhi-x10,0,0); B = (xy,yhi-ylo,0); C = (xz,yz,zhi-zlo). Xy,xz,yz can be 0.0 or positive or negative values and are
called "tilt factors" because they are the amount of displacement applied to faces of an originally orthogonal
box to transform it into the parallelipiped.

A prism region used with the create_box command must have tilt factors (xy,xz,yz) that do not skew the box
more than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then the x box
length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be between
-(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in this
example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all geometrically equivalent.

See Section _howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by
LIGGGHTS(R)-PUBLIC, and how to transform these parameters to and from other commonly used triclinic
representations.

When a prism region is used, the simulation domain must be periodic in any dimensions with a non-zero tilt
factor, as defined by the boundary command. L.e. if the xy tilt factor is non-zero, then both the x and y
dimensions must be periodic. Similarly, x and z must be periodic if Xz is non-zero and y and z must be
periodic if yz is non-zero. Also note that if your simulation will tilt the box, e.g. via the fix deform command,
the simulation box must be defined as triclinic, even if the tilt factors are initially 0.0.

IMPORTANT NOTE: If the system is non-periodic (in a dimension), then you should not make the lo/hi box
dimensions (as defined in your region command) radically smaller/larger than the extent of the atoms you
eventually plan to create, e.g. via the create atoms command. For example, if your atoms extend from 0O to 50,
you should not specify the box bounds as -10000 and 10000. This is because LIGGGHTS(R)-PUBLIC uses
the specified box size to layout the 3d grid of processors. A huge (mostly empty) box will be sub-optimal for

create_box command 97

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

performance when using "fixed" boundary conditions (see the boundary command). When using
"shrink-wrap" boundary conditions (see the boundary command), a huge (mostly empty) box may cause a
parallel simulation to lose atoms the first time that LIGGGHTS(R)-PUBLIC shrink-wraps the box around the
atoms.

Restrictions:

An atom_style and region must have been previously defined to use this command.

Related commands:

create atoms, region

Default: none

create_box command 98

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

delete_atoms command

Syntax:
delete_atoms style args keyword value
e style = group or region or overlap or porosity

group args = group-—-ID
region args = region-ID
overlap args = cutoff groupl-ID group2-ID
cutoff = delete one atom from pairs of atoms within the cutoff (distance units)

groupl-ID = one atom in pair must be in this group

group2-ID = other atom in pair must be in this group
porosity args = region-ID fraction seed

region-ID = region within which to perform deletions

fraction = delete this fraction of atoms
seed = random number seed (positive integer)

¢ zero or more keyword/value pairs may be appended
¢ keyword = compress or mol

compress value = no or yes
mol value = no or yes

Examples:

delete_atoms group edge

delete_atoms region sphere compress no
delete_atoms overlap 0.3 all all
delete_atoms overlap 0.5 solvent colloid
delete_atoms porosity cube 0.1 482793

Description:

Delete the specified atoms. This command can be used to carve out voids from a block of material or to delete
created atoms that are too close to each other (e.g. at a grain boundary).

For style group, all atoms belonging to the group are deleted.

For style region, all atoms in the region volume are deleted. Additional atoms can be deleted if they are in a
molecule for which one or more atoms were deleted within the region; see the mol keyword discussion below.

For style overlap pairs of atoms whose distance of separation is within the specified cutoff distance are
searched for, and one of the 2 atoms is deleted. Only pairs where one of the two atoms is in the first group
specified and the other atom is in the second group are considered. The atom that is in the first group is the
one that is deleted.

Note that it is OK for the two group IDs to be the same (e.g. group all), or for some atoms to be members of
both groups. In these cases, either atom in the pair may be deleted. Also note that if there are atoms which are
members of both groups, the only guarantee is that at the end of the deletion operation, enough deletions will
have occurred that no atom pairs within the cutoff will remain (subject to the group restriction). There is no
guarantee that the minimum number of atoms will be deleted, or that the same atoms will be deleted when
running on different numbers of processors.

delete_atoms command 99

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

For style porosity a specified fraction of atoms are deleted within the specified region. For example, if
fraction is 0.1, then 10% of the atoms will be deleted. The atoms to delete are chosen randomly. There is no
guarantee that the exact fraction of atoms will be deleted, or that the same atoms will be deleted when running
on different numbers of processors.

If the compress keyword is set to yes, then after atoms are deleted, then atom IDs are re-assigned so that they
run from 1 to the number of atoms in the system. This is not done for molecular systems (see the atom_style
command), regardless of the compress setting, since it would foul up the bond connectivity that has already
been assigned.

It the mol keyword is set to yes, then for every atom that is deleted, all other atoms in the same molecule will
also be deleted. This keyword is only used by the region style. It is a way to insure that entire molecules are
deleted instead of only a subset of atoms in a bond or angle or dihedral interaction.

Restrictions:

The overlap styles requires inter-processor communication to acquire ghost atoms and build a neighbor list.
This means that your system must be ready to perform a simulation before using this command (force fields
setup, atom masses set, etc). Since a neighbor list is used to find overlapping atom pairs, it also means that
you must define a pair style with force cutoffs greater than or equal to the desired overlap cutoff between pairs
of relevant atom types, even though the pair potential will not be evaluated.

If the special bonds command is used with a setting of 0, then a pair of bonded atoms (1-2, 1-3, or 1-4) will
not appear in the neighbor list, and thus will not be considered for deletion by the overlap styles. You
probably don't want to be deleting one atom in a bonded pair anyway.

Related commands:

create atoms

Default:

The option defaults are compress = yes and mol = no.

delete_atoms command 100

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

delete_bonds command

Syntax:
delete_bonds group—-ID style args keyword ...

¢ group-ID = group ID
¢ style = multi or atom or bond or stats

multi args = none
atom args an atom type
bond args a bond type
stats args = none
¢ zero or more keywords may be appended

¢ keyword = any or undo or remove or special

Examples:

delete_bonds frozen multi remove
delete_bonds all atom 4 special
delete_bonds all stats

Description:

Turn off (or on) molecular topology interactions, i.e. bonds. This command is useful for deleting interactions
that have been previously turned off by bond-breaking potentials. It is also useful for turning off topology
interactions between frozen or rigid atoms. Pairwise interactions can be turned off via the neigh modify
exclude command.

For all styles, by default, an interaction is only turned off (or on) if all the atoms involved are in the specified
group. See the any keyword to change the behavior.

Style atom is the same as style multi except that in addition, one or more of the atoms involved in the bond,
interaction must also be of the specified atom type.

For style bond, only bonds are candidates for turn-off, and the bond must also be of the specified type.

For style bond, you can set the type to O to delete bonds that have been previously broken by a bond-breaking
potential (which sets the bond type to 0 when a bond is broken); e.g. see the bond style quartic command.

For style stats no interactions are turned off (or on); the status of all interactions in the specified group is
simply reported. This is useful for diagnostic purposes if bonds have been turned off by a bond-breaking
potential during a previous run.

The default behavior of the delete_bonds command is to turn off interactions by toggling their type to a
negative value, but not to permanently remove the interaction. E.g. a bond_type of 2 is set to -2. The neighbor
list creation routines will not include such an interaction in their interaction lists. The default is also to not
alter the list of 1-2, 1-3, 1-4 neighbors computed by the special bonds command and used to weight pairwise
force and energy calculations. This means that pairwise computations will proceed as if the bond were still
turned on.

Several keywords can be appended to the argument list to alter the default behaviors.

delete_bonds command 101

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The any keyword changes the requirement that all atoms in the bond must be in the specified group in order to
turn-off the interaction. Instead, if any of the atoms in the interaction are in the specified group, it will be
turned off (or on if the undo keyword is used).

The undo keyword inverts the delete_bonds command so that the specified bonds are turned on if they are
currently turned off.

The remove keyword is invoked at the end of the delete_bonds operation. It causes turned-off bonds to be
removed from each atom's data structure and then adjusts the global bond counts accordingly. Removal is a
permanent change; removed bonds cannot be turned back on via the undo keyword. Removal does not alter
the pairwise 1-2, 1-3, 1-4 weighting list.

The special keyword is invoked at the end of the delete_bonds operation, after (optional) removal. It
re-computes the pairwise 1-2, 1-3, 1-4 weighting list. The weighting list computation treats turned-off bonds

the same as turned-on. Thus, turned-off bonds must be removed if you wish to change the weighting list.

Note that the choice of remove and special options affects how 1-2, 1-3, 1-4 pairwise interactions will be
computed across bonds that have been modified by the delete_bonds command.

Restrictions:

This command requires inter-processor communication to coordinate the deleting of bonds. This means that
your system must be ready to perform a simulation before using this command (force fields setup, atom
masses set, etc).

Related commands:

neigh modify exclude, special bonds

Default: none

delete_bonds command 102

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

dielectric command
Syntax:
dielectric value
¢ value = dielectric constant
Examples:
dielectric 2.0
Description:
Set the dielectric constant for Coulombic interactions (pairwise and long-range) to this value. The constant is
unitless, since it is used to reduce the strength of the interactions. The value is used in the denominator of the
formulas for Coulombic interactions - e.g. a value of 4.0 reduces the Coulombic interactions to 25% of their
default strength. See the pair_style command for more details.
Restrictions: none
Related commands:
pair_style

Default:

dielectric 1.0

dielectric command 103

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

dimension command

Syntax:
dimension N

eN=2or3
Examples:
dimension 2
Description:
Set the dimensionality of the simulation. By default LIGGGHTS(R)-PUBLIC runs 3d simulations. To run a
2d simulation, this command should be used prior to setting up a simulation box via the create box or
read data commands. Restart files also store this setting.
See the discussion in Section _howto for additional instructions on how to run 2d simulations.
IMPORTANT NOTE: Some models in LIGGGHTS(R)-PUBLIC treat particles as finite-size spheres or
ellipsoids, as opposed to point particles. In 2d, the particles will still be spheres or ellipsoids, not circular disks
or ellipses, meaning their moment of inertia will be the same as in 3d.
Restrictions:
This command must be used before the simulation box is defined by a read data or create_box command.
Related commands:

fix enforce2d

Default:

dimension 3

dimension command 104

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

displace_atoms command

Syntax:

displace_atoms group-ID style args keyword value

¢ group-ID = ID of group of atoms to displace
e style = move or ramp or random or rotate

move args = delx dely delz
delx,dely,delz = distance to displace in each dimension (distance units)
ramp args = ddim dlo dhi dim clo chi
ddim = x or y or z
dlo,dhi = displacement distance between dlo and dhi (distance units)
dim = x or y or z
clo,chi = lower and upper bound of domain to displace (distance units)
random args = dx dy dz seed
dx,dy,dz = random displacement magnitude in each dimension (distance units)
seed = random # seed (positive integer)
rotate args = Px Py Pz Rx Ry Rz theta

Px,Py,Pz = origin point of axis of rotation (distance units)
Rx,Ry,Rz = axis of rotation vector
theta = angle of rotation (degrees)

¢ zero or more keyword/value pairs may be appended

keyword = units
value = box or lattice

Examples:

displace_atoms top move 0 -5 0 units box
displace_atoms flow ramp x 0.0 5.0 y 2.0 20.5

Description:

Displace a group of atoms. This can be used to move atoms a large distance before beginning a simulation or
to randomize atoms initially on a lattice. For example, in a shear simulation, an initial strain can be imposed
on the system. Or two groups of atoms can be brought into closer proximity.

The move style displaces the group of atoms by the specified 3d distance.

The ramp style displaces atoms a variable amount in one dimension depending on the atom's coordinate in a
(possibly) different dimension. For example, the second example command displaces atoms in the x-direction
an amount between 0.0 and 5.0 distance units. Each atom's displacement depends on the fractional distance its
y coordinate is between 2.0 and 20.5. Atoms with y-coordinates outside those bounds will be moved the
minimum (0.0) or maximum (5.0) amount.

The random style independently moves each atom in the group by a random displacement, uniformly sampled
from a value between -dx and +dx in the x dimension, and similarly for y and z. Random numbers are used in
such a way that the displacement of a particular atom is the same, regardless of how many processors are
being used.

The rotate style rotates each atom in the group by the angle theta around a rotation axis R = (Rx,Ry,Rz) that
goes thru a point P = (Px,Py,Pz). The direction of rotation for the atoms around the rotation axis is consistent
with the right-hand rule: if your right-hand's thumb points along R, then your fingers wrap around the axis in

displace_atoms command 105

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

the direction of positive theta.

Distance units for displacements and the origin point of the rotate style are determined by the setting of box or
lattice for the units keyword. Box means distance units as defined by the units command - e.g. Angstroms for
real units. Lattice means distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing.

IMPORTANT NOTE: Care should be taken not to move atoms on top of other atoms. After the move, atoms
are remapped into the periodic simulation box if needed, and any shrink-wrap boundary conditions (see the
boundary command) are enforced which may change the box size. Other than this effect, this command does
not change the size or shape of the simulation box. See the change box command if that effect is desired.

IMPORTANT NOTE: Atoms can be moved arbitrarily long distances by this command. If the simulation box
is non-periodic and shrink-wrapped (see the boundary command), this can change its size or shape. This is not
a problem, except that the mapping of processors to the simulation box is not changed by this command from

its initial 3d configuration; see the processors command. Thus, if the box size/shape changes dramatically, the
mapping of processors to the simulation box may not end up as optimal as the initial mapping attempted to be.

Restrictions:

You cannot rotate around any rotation vector except the z-axis for a 2d simulation.
Related commands:

lattice, change box, fix move

Default:

The option defaults are units = lattice.

displace_atoms command 106

LIGGGHTS(R)-PUBLIC Users Manual

LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBILIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

dump custom/vtk command

Syntax:
dump ID group-ID style N file args

¢ ID = user-assigned name for the dump

e group-ID = ID of the group of atoms to be dumped
o style = custom/vtk

¢ N = dump every this many timesteps

¢ file = name of file to write dump info to

e args = list of arguments for a particular style

custom/vtk args = list of atom attributes
possible attributes = id, mol, type, element, mass, density, rho,

X, y, 2z, XS, ys, zs, xXu, yu, zu,
xsu, ysu, zsu, ix, iy, iz,
vx, vy, vz, fx, fy, fz,
g, mux, muy, muz, mu,
radius, diameter, omegax, omegay, omegaz,
angmomx, angmomy, angmomz, tgx, tqy, tqgz,
c_ID, c_ID[N], f_ID, f_IDI[N], Vv_name

id = atom ID
mol = molecule ID

type = atom type

element =
mass = at
X,¥Yrz2 = U

XS,YS,2S =

Xu,yu, zu
Xsu,ysu, z
ix, iy, iz
VX,VYy,VZ
fx,fy, fz
g = atom
mux,muy,m
mu = magn

radius, di
omegax, om
angmomx, a
tgx,tqy, t
c_ID = pe
c_ID[N] =
f_ID = pe
f_ID[N] =
v_name =

Examples:

name of atom element, as defined by dump modify command
om mass
nscaled atom coordinates
scaled atom coordinates
= unwrapped atom coordinates

su = scaled unwrapped atom coordinates
= box image that the atom is in
= atom velocities

= forces on atoms

charge

uz = orientation of dipole moment of atom

itude of dipole moment of atom

ameter = radius,diameter of spherical particle
egay,omegaz = angular velocity of spherical particle
ngmomy, angmomz = angular momentum of aspherical particle
gz = torque on finite-size particles

r-atom vector calculated by a compute with ID

Nth column of per—-atom array calculated by a compute with ID
r-atom vector calculated by a fix with ID

Nth column of per—-atom array calculated by a fix with ID
per—atom vector calculated by an atom-style variable with name

dump dmpvtk all custom/vtk 100 dump*.myforce.vtk id type vx fx
dump dmpvtp flow custom/vtk 100 dump*.%.displace.vtp id type c_myD[1l] c_myD[2] c_myD[3]

Description:

Dump a snapshot of atom quantities to one or more files every N timesteps. The timesteps on which dump
output is written can also be controlled by a variable; see the dump modify every command for details.

dump custom/vtk comm

and

ke

107

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Only information for atoms in the specified group is dumped. The dump modify thresh and region commands
can also alter what atoms are included; see details below.

As described below, special characters ("*", "%") in the filename determine the kind of output.

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom written to a dump file may be slightly outside the simulation box.

IMPORTANT NOTE: Unless the dump _modify sort option is invoked, the lines of atom information written
to dump files will be in an indeterminate order for each snapshot. This is even true when running on a single
processor, if the atom modify sort option is on, which it is by default. In this case atoms are re-ordered
periodically during a simulation, due to spatial sorting. It is also true when running in parallel, because data
for a single snapshot is collected from multiple processors, each of which owns a subset of the atoms.

For the custom/vtk style, sorting is off by default. See the dump modify doc page for details.

The dimensions of the simulation box are written to a separate file for each snapshot (either in legacy VTK or
XML format depending on the format of the main dump file) with the suffix _boundingBox appended to the
given dump filename.

For an orthogonal simulation box this information is saved as a rectilinear grid (legacy .vtk or .vtr XML
format).

Triclinic simulation boxes (non-orthogonal) are saved as hexahedrons in either legacy .vtk or .vtu XML
format.

Style custom/vtk allows you to specify a list of atom attributes to be written to the dump file for each atom.
Possible attributes are listed above. In contrast to the custom style, the attributes are rearranged to ensure
correct ordering of vector components (except for computes and fixes - these have to be given in the right
order) and duplicate entries are removed.

You cannot specify a quantity that is not defined for a particular simulation - such as g for atom style bond,
since that atom style doesn't assign charges. Dumps occur at the very end of a timestep, so atom attributes will
include effects due to fixes that are applied during the timestep. An explanation of the possible dump
custom/vtk attributes is given below. Since position data is required to write VTK files "x y z" do not have to
be specified explicitly.

The VTK format uses a single snapshot of the system per file, thus a wildcard "*" must be included in the
filename, as discussed below. Otherwise the dump files will get overwritten with the new snapshot each time.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump modify first command, which can also be useful if the dump command is invoked
after a minimization ended on an arbitrary timestep. N can be changed between runs by using the

dump modify every command. The dump modify every command also allows a variable to be used to
determine the sequence of timesteps on which dump files are written. In this mode a dump on the first
timestep of a run will also not be written unless the dump modify first command is used.

Dump filenames can contain two wildcard characters. If a "*" character appears in the filename, then one file
per snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump*.vtk
becomes tmp.dump0.vtk, tmp.dump10000.vtk, tmp.dump20000.vtk, etc. Note that the dump modify pad
command can be used to insure all timestep numbers are the same length (e.g. 00010), which can make it
easier to read a series of dump files in order with some post-processing tools.

dump custom/vtk command 108

LIGGGHTS(R)-PUBLIC Users Manual

If a "%" character appears in the filename, then each of P processors writes a portion of the dump file, and the
"%" character is replaced with the processor ID from 0 to P-1 preceded by an underscore character. For
example, tmp.dump%.vtp becomes tmp.dump_0.vtp, tmp.dump_1.vtp, ... tmp.dump_P-1.vtp, etc. This creates
smaller files and can be a fast mode of output on parallel machines that support parallel I/O for output.

By default, P = the number of processors meaning one file per processor, but P can be set to a smaller value
via the nfile or fileper keywords of the dump modify command. These options can be the most efficient way
of writing out dump files when running on large numbers of processors.

For the legacy VTK format "%" is ignored and P = 1, i.e., only processor 0 does write files.

Note that using the "*" and "%" characters together can produce a large number of small dump files!

If dump_modify binary is used, the dump file (or files, if "*" or "%" is also used) is written in binary format. A
binary dump file will be about the same size as a text version, but will typically write out much faster.

This section explains the atom attributes that can be specified as part of the custom/vtk style.
The id, mol, type, element, mass, vx, vy, vz, fx, fy, fz, q attributes are self-explanatory.

id is the atom ID. mol is the molecule ID, included in the data file for molecular systems. type is the atom
type. element is typically the chemical name of an element, which you must assign to each type via the
dump modify element command. More generally, it can be any string you wish to associate with an atom
type. mass is the atom mass. vx, vy, vz, fx, fy, fz, and g are components of atom velocity and force and atomic
charge.

There are several options for outputting atom coordinates. The x, y, z attributes are used to write atom
coordinates "unscaled", in the appropriate distance units (Angstroms, sigma, etc). Additionaly, you can use xs,
ys, zs if you want to also save the coordinates "scaled" to the box size, so that each value is 0.0 to 1.0. If the
simulation box is triclinic (tilted), then all atom coords will still be between 0.0 and 1.0. Use xu, yu, zu if you
want the coordinates "unwrapped" by the image flags for each atom. Unwrapped means that if the atom has
passed through a periodic boundary one or more times, the value is printed for what the coordinate would be if
it had not been wrapped back into the periodic box. Note that using xu, yu, zu means that the coordinate values
may be far outside the box bounds printed with the snapshot. Using xsu, ysu, zsu is similar to using xu, yu, zu,
except that the unwrapped coordinates are scaled by the box size. Atoms that have passed through a periodic
boundary will have the corresponding cooordinate increased or decreased by 1.0.

The image flags can be printed directly using the ix, iy, iz attributes. For periodic dimensions, they specify
which image of the simulation box the atom is considered to be in. An image of 0 means it is inside the box as
defined. A value of 2 means add 2 box lengths to get the true value. A value of -1 means subtract 1 box length
to get the true value. LIGGGHTS(R)-PUBLIC updates these flags as atoms cross periodic boundaries during
the simulation.

The mux, muy, muz attributes are specific to dipolar systems defined with an atom style of dipole. They give
the orientation of the atom's point dipole moment. The mu attribute gives the magnitude of the atom's dipole

moment.

The radius and diameter attributes are specific to spherical particles that have a finite size, such as those
defined with an atom style of sphere.

The omegax, omegay, and omegaz attributes are specific to finite-size spherical particles that have an angular
velocity. Only certain atom styles, such as sphere define this quantity.

The angmomx, angmomy, and angmomz attributes are specific to finite-size aspherical particles that have an

dump custom/vtk command 109

LIGGGHTS(R)-PUBLIC Users Manual

angular momentum. Only the ellipsoid atom style defines this quantity.

The tgx, tqy, tqz attributes are for finite-size particles that can sustain a rotational torque due to interactions
with other particles.

The c_ID and c_ID[N] attributes allow per-atom vectors or arrays calculated by a compute to be output. The
ID in the attribute should be replaced by the actual ID of the compute that has been defined previously in the
input script. See the compute command for details. There are computes for calculating the per-atom energy,
stress, centro-symmetry parameter, and coordination number of individual atoms.

Note that computes which calculate global or local quantities, as opposed to per-atom quantities, cannot be
output in a dump custom/vtk command. Instead, global quantities can be output by the thermo_style custom
command, and local quantities can be output by the dump local command.

If c_ID is used as an attribute, then the per-atom vector calculated by the compute is printed. If c_ID[N] is
used, then N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array
calculated by the compute.

The f_ID and f_ID[N] attributes allow vector or array per-atom quantities calculated by a fix to be output. The
ID in the attribute should be replaced by the actual ID of the fix that has been defined previously in the input
script. The fix ave/atom command is one that calculates per-atom quantities. Since it can time-average
per-atom quantities produced by any compute, fix, or atom-style variable, this allows those time-averaged
results to be written to a dump file.

If £_ID is used as a attribute, then the per-atom vector calculated by the fix is printed. If f_ID[N] is used, then
N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array calculated
by the fix.

The v_name attribute allows per-atom vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only
an atom-style variable can be referenced, since it is the only style that generates per-atom values. Variables of
style afom can reference individual atom attributes, per-atom atom attributes, thermodynamic keywords, or
invoke other computes, fixes, or variables when they are evaluated, so this is a very general means of creating
quantities to output to a dump file.

See Section _modify of the manual for information on how to add new compute and fix styles to
LIGGGHTS(R)-PUBLIC to calculate per-atom quantities which could then be output into dump files.

Restrictions:

The custom/vtk style does not support writing of gzipped dump files.

To be able to use custom/vtk, you have to link to the VTK library, please adapt your Makefile accordingly.
You must compile LIGGGHTS(R)-PUBLIC with the -DLAMMPS_VTK option - see the Making
LIGGGHTS(R)-PUBLIC section of the documentation.

The custom/vtk dump style neither supports buffering nor custom format strings.

Related commands:

dump, dump image, dump modify, undump

Default:

dump custom/vtk command 110

LIGGGHTS(R)-PUBLIC Users Manual

By default, files are written in ASCII format. If the file extension is not one of .vtk, .vtp or .vtu, the legacy
VTK file format is used.

dump custom/vtk command

111

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

dump command

dump image command
dump movie command

Syntax:
dump ID group-ID style N file args

¢ D = user-assigned name for the dump

e group-ID = ID of the group of atoms to be dumped

¢ style = atom or atom/vtk or xyz or image or local or custom or mesh/stl or mesh/vtk or mesh/vtk or
decomposition/vtk or euler/vtk

¢ N = dump every this many timesteps

¢ file = name of file to write dump info to

e args = list of arguments for a particular style

atom args = none
atom/vtk args =
Xyz args = none

none

image args = discussed on dump image doc page

mesh/stl args = 'local' or 'ghost' or 'all' or 'region'

or any ID of a fix mesh/surface

region values =
mesh/vtk args =

keywords = output

output values = face or interpolate

ID for region threshold

zero or more keyword/ value pairs and one or more dump-identifiers

dump-identifier = 'stress' or 'id' or 'wear' or 'vel' or 'stresscomponents' or 'owne
euler/vtk args = none
decomposition/vtk args = none
local args = list of local attributes
possible attributes = index, c_ID, c_ID[N], f_ID, f_ID[N]

index = enumeration of local values

c_ID = local vector calculated by a compute with ID

c_ID[N] = Nth column of local array calculated by a compute with ID

f_ID = local vector calculated by a fix with ID

f_ID[N] = Nth column of local array calculated by a fix with ID

custom args = list of atom attributes
possible attributes = id, mol, type, element, mass,

X, yV, 2z, XS, ys, zs, xXu, yu, zu,
xsu, ysu, zsu, ix, iy, iz,
vx, vy, vz, fx, fy, fz,
g, mux, muy, muz, mu,
radius, diameter, omegax, omegay, omegaz,
angmomx, angmomy, angmomz, tgx, tqy, tqgz,
c_ID, c_ID[N], f_ID, f_IDI[N], Vv_name

id = atom ID

mol = molecule ID

type = atom type

element = name of atom element, as defined by dump modify command

mass = atom mass

X,y,2z = unscaled atom coordinates

dump command 112

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

XS,ys,zs = scaled atom coordinates

XU, yu, zu = unwrapped atom coordinates

XsU,ysu,zsu = scaled unwrapped atom coordinates

ix,iy,iz = box image that the atom is in

vx,Vy,vz = atom velocities

fx,fy,fz = forces on atoms

g = atom charge

mux,muy,muz = orientation of dipole moment of atom

mu = magnitude of dipole moment of atom

radius,diameter = radius,diameter of spherical particle

omegax, omegay,omegaz = angular velocity of spherical particle
angmomx, angmomy, angmomz = angular momentum of aspherical particle
tgx,tqy,tgz = torque on finite-size particles

c_ID = per-atom vector calculated by a compute with ID

c_ID[N] = Nth column of per-atom array calculated by a compute with ID
f_ID = per-atom vector calculated by a fix with ID

f_ID[N] = Nth column of per—-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name

Examples:

dump myDump all atom 100 dump.atom

dump 2 subgroup atom 50 dump.run.bin

dump 4a all custom 100 dump.myforce.* id type x y vx fx

dump 4b flow custom 100 dump.%.myforce id type c_myF[3] v_ke

Description:

Dump a snapshot of atom quantities to one or more files every N timesteps in one of several styles. The image
style is the exception; it creates a JPG or PPM image file of the atom configuration every N timesteps, as
discussed on the dump image doc page. The timesteps on which dump output is written can also be controlled
by a variable; see the dump modify every command for details.

Only information for atoms in the specified group is dumped. The dump modify thresh and region commands
can also alter what atoms are included. Not all styles support all these options; see details below.

As described below, the filename determines the kind of output (text or binary or gzipped, one big file or one
per timestep, one big file or multiple smaller files).

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom written to a dump file may be slightly outside the simulation box.

IMPORTANT NOTE: Unless the dump _modify sort option is invoked, the lines of atom information written
to dump files (typically one line per atom) will be in an indeterminate order for each snapshot. This is even
true when running on a single processor, if the atom modify sort option is on, which it is by default. In this
case atoms are re-ordered periodically during a simulation, due to spatial sorting. It is also true when running
in parallel, because data for a single snapshot is collected from multiple processors, each of which owns a
subset of the atoms.

For the atom, custom, and local styles, sorting is off by default. For the xyz style, sorting by atom ID is on by
default. See the dump _modify doc page for details.

The style keyword determines what atom quantities are written to the file and in what format. Settings made
via the dump modify command can also alter the format of individual values and the file itself.

The atom, local, and custom styles create files in a simple text format that is self-explanatory when viewing a
dump file.

dump movie command 113

LIGGGHTS(R)-PUBLIC Users Manual

For post-processing purposes the atom, local, and custom text files are self-describing in the following sense.

The dimensions of the simulation box are included in each snapshot. For an orthogonal simulation box this
information is is formatted as:

ITEM: BOX BOUNDS xx yy zz
xlo xhi
ylo yhi
zlo zhi

where xlo,xhi are the maximum extents of the simulation box in the x-dimension, and similarly for y and z.
The "xx yy zz" represent 6 characters that encode the style of boundary for each of the 6 simulation box
boundaries (xlo,xhi and ylo,yhi and zlo,zhi). Each of the 6 characters is either p = periodic, f = fixed, s =
shrink wrap, or m = shrink wrapped with a minimum value. See the boundary command for details.

For triclinic simulation boxes (non-orthogonal), an orthogonal bounding box which encloses the triclinic
simulation box is output, along with the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS Xy Xz yzZ XX Yy Z2Z
x1lo_bound xhi_bound xy
ylo_bound yhi_bound xz
zlo_bound zhi_bound yz

The presence of the text "xy xz yz" in the ITEM line indicates that the 3 tilt factors will be included on each of
the 3 following lines. This bounding box is convenient for many visualization programs. The meaning of the 6
character flags for "xx yy zz" is the same as above.

Note that the first two numbers on each line are now xlo_bound instead of xlo, etc, since they repesent a
bounding box. See this section of the doc pages for a geometric description of triclinic boxes, as defined by
LIGGGHTS(R)-PUBLIC, simple formulas for how the 6 bounding box extents (xlo_bound,xhi_bound,etc)
are calculated from the triclinic parameters, and how to transform those parameters to and from other
commonly used triclinic representations.

The "ITEM: ATOMS" line in each snapshot lists column descriptors for the per-atom lines that follow. For
example, the descriptors would be "id type xs ys zs" for the default atom style, and would be the atom
attributes you specify in the dump command for the custom style.

For style atom, atom coordinates are written to the file, along with the atom ID and atom type. By default,
atom coords are written in a scaled format (from O to 1). I.e. an x value of 0.25 means the atom is at a location
1/4 of the distance from xlo to xhi of the box boundaries. The format can be changed to unscaled coords via
the dump modify settings. Image flags can also be added for each atom via dump_modify.

For style atom/vtk, atom coordinates, velocity, rotational velocity, force, atom ID, atom radius and atom type
are written to VTK files. Note that you have to link against VTK libraries to use this functionality.

Style custom allows you to specify a list of atom attributes to be written to the dump file for each atom.
Possible attributes are listed above and will appear in the order specified. You cannot specify a quantity that is
not defined for a particular simulation - such as g for atom style bond, since that atom style doesn't assign
charges. Dumps occur at the very end of a timestep, so atom attributes will include effects due to fixes that are
applied during the timestep. An explanation of the possible dump custom attributes is given below.

For style local, local output generated by computes and fixes is used to generate lines of output that is written
to the dump file. This local data is typically calculated by each processor based on the atoms it owns, but there
may be zero or more entities per atom, e.g. a list of bond distances. An explanation of the possible dump local
attributes is given below. Note that by using input from the compute property/local command with dump
local, it is possible to generate information on bonds that can be cut and pasted directly into a data file read by

dump movie command 114

LIGGGHTS(R)-PUBLIC Users Manual

the read_data command.

The xyz style writes XYZ files, which is a simple text-based coordinate format that many codes can read.
Specifically it has a line with the number of atoms, then a comment line that is usually ignored followed by
one line per atom with the atom type and the x-, y-, and z-coordinate of that atom. You can use the

dump modify element option to change the output from using the (numerical) atom type to an element name
(or some other label). This will help many visualization programs to guess bonds and colors.

The mesh/stl style dumps active STL geometries defined via fix mesh commands into the specified file. If you
do not supply the optional list of mesh IDs, all meshes are dumped, irrespective of whether they are used in a
fix wall/gran command or not. By specifying a list of mesh IDs you can explicitly choose which meshes to
dump. The group-ID is ignored, because the command is not applied to particles, but to mesh geometries.
With keywords 'local’, 'owned' or 'ghost' you can decide which parts of the parallel meshes you want to dump
(default is 'local'). If the multiprocessor option is not used (no '%' in filename), data is gathered from all
processors, so using the default will output the whole mesh data across all processors.

Examples:

dump stll all mesh/stl 300 post/dump*.stl

dump stl2 all mesh/stl 300 post/dump_proc%_local*.stl local
dump stl3 all mesh/stl 300 post/dump_proc%_ghost*.stl ghost
dump stl4 all mesh/stl 300 post/dump_proc_all_ghost*.stl ghost

The first command will write one file per time-step containing the complete mesh. The second command will
output one file per time-step per processor containing the local (owned) mesh elements of each processor. The
third command will output one file per time-step per processor containing the ghost (corona) mesh elements
of each processor. The third command will output one file per time-step containing the ghost (corona) mesh
elements of all processors.

With the region keyword, just those mesh element where the element center (arithmetic average of all nodes)
is in the specified region, will be dumped.

This dump is especially useful if a fix move/mesh is registered. If the position of the mesh is changed over
time and you want to dump one file for each dump timestep for post-processing together with the particle
data, you should use a filename like 'mydumpfile*.stl'. Note: This series of files can then be post-processed
together with the particle dump file converted to VTK in Paraview , www.paraview.org

By providing any ID (or a list of IDs) of fix mesh/surface commands, you can specify which meshes to dump.
If no meshes are specified, all meshes used in the simulation are dumped.

The mesh/vtk style can be used to dump active mesh geometries defined via fix mesh commands to a series of
VTK files. Different keywords can be used to dump the per-triangle stress (force magnitude / element area),
id, velocity, wear, stress components (fx / element area, fy / element area, fz / element area), area (area of each
element) or the process which owns the element (visulatisation of the parallel decomposition) into the
specified file using a VTK file format. The list of mesh IDs is optional. As with the stl style, all active meshes
are dumped if you do not supply the optional list of mesh IDs. By specifying list of mesh IDs you can
explicitly choose which meshes to dump. The group-ID is ignored. Again, a series of files can be
post-processed in Paraview , www.paraview.org Most keywords as used for the mesh/vtk style are
self-explanatory. Keyword output controlls if the data is written in a per-face manner or as interpolated values
to VTK. Keywords aedges and acorners dump the number of active edges/corners per face. Keyword nneighs
dumps the number of face neighbors LIGGGHTS(R)-PUBLIC has recognized for each face.

By providing any ID (or a list of IDs) of fix mesh/surface commands, you can specify which meshes to dump.
If no meshes are specified, all meshes used in the simulation are dumped.

dump movie command 115

LIGGGHTS(R)-PUBLIC Users Manual

The euler/vtk style dumps the output of a fix ave/euler command into a series of VTK files. No further args
are expected.

The decomposition/vtk style dumps the processor grid decomposition into a series of VTK files. No further
args are expected.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump modify first command, which can also be useful if the dump command is invoked
after a minimization ended on an arbitrary timestep. N can be changed between runs by using the

dump modify every command. The dump modify every command also allows a variable to be used to
determine the sequence of timesteps on which dump files are written. In this mode a dump on the first
timestep of a run will also not be written unless the dump modify first command is used.

The specified filename determines how the dump file(s) is written. The default is to write one large text file,
which is opened when the dump command is invoked and closed when an undump command is used or when
LIGGGHTS(R)-PUBLIC exits.

Dump filenames can contain two wildcard characters. If a "*" character appears in the filename, then one file
per snapshot is written and the "*" character is replaced with the timestep value. For example, tmp.dump.*
becomes tmp.dump.0, tmp.dump.10000, tmp.dump.20000, etc. Note that the dump modify pad command can
be used to insure all timestep numbers are the same length (e.g. 00010), which can make it easier to read a
series of dump files in order with some post-processing tools.

If a "%" character appears in the filename, then each of P processors writes a portion of the dump file, and the
"%" character is replaced with the processor ID from 0 to P-1. For example, tmp.dump.% becomes
tmp.dump.0, tmp.dump.1, ... tmp.dump.P-1, etc. This creates smaller files and can be a fast mode of output on
parallel machines that support parallel I/O for output. This option is not available for the xyz style.

By default, P = the number of processors meaning one file per processor, but P can be set to a smaller value
via the nfile or fileper keywords of the dump modify command. These options can be the most efficient way
of writing out dump files when running on large numbers of processors.

Note that using the "*" and "%" characters together can produce a large number of small dump files!
If the filename ends with ".bin", the dump file (or files, if "*" or "%" is also used) is written in binary format.
A binary dump file will be about the same size as a text version, but will typically write out much faster. This

option is only available for the atom and custom styles.

If the filename ends with ".gz", the dump file (or files, if "*" or "%" is also used) is written in gzipped format.
A gzipped dump file will be about 3x smaller than the text version, but will also take longer to write.

This section explains the local attributes that can be specified as part of the local style.

The index attribute can be used to generate an index number from 1 to N for each line written into the dump
file, where N is the total number of local datums from all processors, or lines of output that will appear in the
snapshot. Note that because data from different processors depend on what atoms they currently own, and
atoms migrate between processor, there is no guarantee that the same index will be used for the same info
(e.g. a particular bond) in successive snapshots.

The c_ID and c_ID/[N] attributes allow local vectors or arrays calculated by a compute to be output. The ID in

the attribute should be replaced by the actual ID of the compute that has been defined previously in the input
script. See the compute command for details. There are computes for calculating local information such as

dump movie command 116

LIGGGHTS(R)-PUBLIC Users Manual

indices, types, and energies for bonds.

Note that computes which calculate global or per-atom quantities, as opposed to local quantities, cannot be
output in a dump local command. Instead, global quantities can be output by the thermo _style custom
command, and per-atom quantities can be output by the dump custom command.

If c_ID is used as a attribute, then the local vector calculated by the compute is printed. If c_ID[N] is used,
then N must be in the range from 1-M, which will print the Nth column of the M-length local array calculated
by the compute.

The f_ID and f_ID[N] attributes allow local vectors or arrays calculated by a fix to be output. The ID in the
attribute should be replaced by the actual ID of the fix that has been defined previously in the input script.

If £_ID is used as a attribute, then the local vector calculated by the fix is printed. If £ ID[N] is used, then N
must be in the range from 1-M, which will print the Nth column of the M-length local array calculated by the
fix.

Here is an example of how to dump bond info for a system, including the distance and energy of each bond:

compute 1 all property/local batoml batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_1[1] c_1[2] c_1[3] c_2[1] c_2[2]

This section explains the atom attributes that can be specified as part of the custom and style.
The id, mol, type, element, mass, vx, vy, vz, fx, fy, fz, q attributes are self-explanatory.

Id is the atom ID. Mol is the molecule ID, included in the data file for molecular systems. Type is the atom
type. Element is typically the chemical name of an element, which you must assign to each type via the

dump modify element command. More generally, it can be any string you wish to associated with an atom
type. Mass is the atom mass. Vx, vy, vz, fx, fv, fz, and g are components of atom velocity and force and atomic
charge.

There are several options for outputting atom coordinates. The x, y, z attributes write atom coordinates
"unscaled", in the appropriate distance units (Angstroms, sigma, etc). Use xs, ys, zs if you want the
coordinates "scaled" to the box size, so that each value is 0.0 to 1.0. If the simulation box is triclinic (tilted),
then all atom coords will still be between 0.0 and 1.0. Use xu, yu, zu if you want the coordinates "unwrapped"
by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic boundary one
or more times, the value is printed for what the coordinate would be if it had not been wrapped back into the
periodic box. Note that using xu, yu, zu means that the coordinate values may be far outside the box bounds
printed with the snapshot. Using xsu, ysu, zsu is similar to using xu, yu, zu, except that the unwrapped
coordinates are scaled by the box size. Atoms that have passed through a periodic boundary will have the
corresponding cooordinate increased or decreased by 1.0.

The image flags can be printed directly using the ix, iy, iz attributes. For periodic dimensions, they specify
which image of the simulation box the atom is considered to be in. An image of 0 means it is inside the box as
defined. A value of 2 means add 2 box lengths to get the true value. A value of -1 means subtract 1 box length
to get the true value. LIGGGHTS(R)-PUBLIC updates these flags as atoms cross periodic boundaries during
the simulation.

The mux, muy, muz attributes are specific to dipolar systems defined with an atom style of dipole. They give

the orientation of the atom's point dipole moment. The mu attribute gives the magnitude of the atom's dipole
moment.

dump movie command 117

LIGGGHTS(R)-PUBLIC Users Manual

The radius and diameter attributes are specific to spherical particles that have a finite size, such as those
defined with an atom style of sphere.

The omegax, omegay, and omegaz attributes are specific to finite-size spherical particles that have an angular
velocity. Only certain atom styles, such as sphere define this quantity.

The angmomx, angmomy, and angmomz attributes are specific to finite-size aspherical particles that have an
angular momentum. Only the ellipsoid atom style defines this quantity.

The tgx, tqy, tqz attributes are for finite-size particles that can sustain a rotational torque due to interactions
with other particles.

The c_ID and c_ID[N] attributes allow per-atom vectors or arrays calculated by a compute to be output. The
ID in the attribute should be replaced by the actual ID of the compute that has been defined previously in the
input script. See the compute command for details. There are computes for calculating the per-atom energy,
stress, centro-symmetry parameter, and coordination number of individual atoms.

Note that computes which calculate global or local quantities, as opposed to per-atom quantities, cannot be
output in a dump custom command. Instead, global quantities can be output by the thermo_style custom
command, and local quantities can be output by the dump local command.

If c_ID is used as a attribute, then the per-atom vector calculated by the compute is printed. If c_ID[N] is
used, then N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array
calculated by the compute.

The f_ID and f_ID[N] attributes allow vector or array per-atom quantities calculated by a fix to be output. The
ID in the attribute should be replaced by the actual ID of the fix that has been defined previously in the input
script. The fix ave/atom command is one that calculates per-atom quantities. Since it can time-average
per-atom quantities produced by any compute, fix, or atom-style variable, this allows those time-averaged
results to be written to a dump file.

If £_ID is used as a attribute, then the per-atom vector calculated by the fix is printed. If f_ID[N] is used, then
N must be in the range from 1-M, which will print the Nth column of the M-length per-atom array calculated
by the fix.

The v_name attribute allows per-atom vectors calculated by a variable to be output. The name in the attribute
should be replaced by the actual name of the variable that has been defined previously in the input script. Only
an atom-style variable can be referenced, since it is the only style that generates per-atom values. Variables of
style afom can reference individual atom attributes, per-atom atom attributes, thermodynamic keywords, or
invoke other computes, fixes, or variables when they are evaluated, so this is a very general means of creating
quantities to output to a dump file.

See Section _modify of the manual for information on how to add new compute and fix styles to
LIGGGHTS(R)-PUBLIC to calculate per-atom quantities which could then be output into dump files.

Restrictions:

To write gzipped dump files, you must compile LIGGGHTS(R)-PUBLIC with the -DLAMMPS_GZIP option
- see the Making LAMMPS section of the documentation.

To be able to use atom/vtk, you have to link to VTK libraries, please adapt your Makefile accordingly.

Related commands:

dump movie command 118

LIGGGHTS(R)-PUBLIC Users Manual
dump image, dump modify, undump

Default:

The defaults for the image style are listed on the dump image doc page.

dump movie command

119

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

dump image command

dump movie command

Syntax:
dump ID group-ID style N file color diameter keyword value

¢ D = user-assigned name for the dump

e group-ID = ID of the group of atoms to be imaged

o style = image or movie = style of dump command (other styles atom or ¢fg or dcd or xtc or xyz or
local or custom are discussed on the dump doc page)

¢ N = dump every this many timesteps

e file = name of file to write image to

e color = atom attribute that determines color of each atom

e diameter = atom attribute that determines size of each atom

¢ zero or more keyword/value pairs may be appended

¢ keyword = adiam or atom or bond or size or view or center Or up Or ZOom Or persp or box or axes or
shiny or ssao

adiam value = number = numeric value for atom diameter (distance units)
atom = yes/no = do or do not draw atoms
bond values = color width = color and width of bonds
color = atom or type or none
width = number or atom or type or none
number = numeric value for bond width (distance units)
size values = width height = size of images
width = width of image in # of pixels
height = height of image in # of pixels
view values = theta phi = view of simulation box
theta = view angle from +z axis (degrees)
phi = azimuthal view angle (degrees)
theta or phi can be a variable (see below)
center values = flag Cx Cy Cz = center point of image
flag = "s" for static, "d" for dynamic
Cx,Cy,Cz = center point of image as fraction of box dimension (0.5 = center of box)
Cx,Cy,Cz can be variables (see below)
up values = Ux Uy Uz = direction that is "up" in image
Ux,Uy,Uz = components of up vector
Ux,Uy,Uz can be variables (see below)
zoom value = zfactor = size that simulation box appears in image
zfactor = scale image size by factor > 1 to enlarge, factor <1 to shrink
zfactor can be a variable (see below)
persp value = pfactor = amount of "perspective" in image
pfactor = amount of perspective (0 = none, <1 = some, > 1 = highly skewed)
pfactor can be a variable (see below)
box values = yes/no diam = draw outline of simulation box
yes/no = do or do not draw simulation box lines
diam = diameter of box lines as fraction of shortest box length
axes values = yes/no length diam = draw xyz axes
yes/no = do or do not draw xyz axes lines next to simulation box
length = length of axes lines as fraction of respective box lengths
diam = diameter of axes lines as fraction of shortest box length
shiny value = sfactor = shinyness of spheres and cylinders
sfactor = shinyness of spheres and cylinders from 0.0 to 1.0
ssao value = yes/no seed dfactor = SSAO depth shading
yes/no = turn depth shading on/off
seed = random # seed (positive integer)

dump image command 120

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

dfactor = strength of shading from 0.0 to 1.0

Examples:

dump dO all image 100 dump.*.]jpg type type

dump dl mobile image 500 snap.*.png element element ssao yes 4539 0.6

dump d2 all image 200 img-*.ppm type type zoom 2.5 adiam 1.5 size 1280 720
dump mO all movie 1000 movie.mpg type type size 640 480

dump ml all movie 1000 movie.avi type type size 640 480

dump m2 all movie 100 movie.md4v type type zoom 1.8 adiam v_value size 1280 720

Description:

Dump a high-quality rendered image of the atom configuration every N timesteps and save the images either
as a sequence of JPG or PNG, or PPM files, or as a single movie file. The options for this command as well as
the dump modify command control what is included in the image or movie and how it appears. A series of
such images can easily be manually converted into an animated movie of your simulation or the process can
be automated without writing the intermediate files using the dump movie style; see further details below.
Other dump styles store snapshots of numerical data asociated with atoms in various formats, as discussed on
the dump doc page.

Note that a set of images or a movie can be made after a simulation has been run, using the rerun command to
read snapshots from an existing dump file, and using these dump commands in the rerun script to generate the

images/movie.

Here are two sample images, rendered as 1024x1024 JPG files. Click to see the full-size images:

Only atoms in the specified group are rendered in the image. The dump modify region and thresh commands
can also alter what atoms are included in the image.

The filename suffix determines whether a JPEG, PNG, or PPM file is created with the image dump style. If
the suffix is ".jpg" or ".jpeg", then a JPEG format file is created, if the suffix is ".png", then a PNG format is
created, else a PPM (aka NETPBM) format file is created. The JPG and PNG files are binary; PPM has a text
mode header followed by binary data. JPG images have lossy compression; PNG has lossless compression;
and PPM files are uncompressed but can be compressed with gzip, if LIGGGHTS(R)-PUBLIC has been
compiled with -DLAMMPS_GZIP and a ".gz" suffix is used.

Similarly, the format of the resulting movie is chosen with the movie dump style. This is handled by the
underlying FFmpeg converter and thus details have to be looked up in the FFmpeg documentation. Typical
examples are: .avi, .mpg, .m4v, .mp4, .mkv, .flv, .mov, .gif Additional settings of the movie compression like
bitrate and framerate can be set using the dump modify command.

dump movie command 121

LIGGGHTS(R)-PUBLIC Users Manual

To write out JPEG and PNG format files, you must build LIGGGHTS(R)-PUBLIC with support for the
corresponding JPEG or PNG library. To convert images into movies, LIGGGHTS(R)-PUBLIC has to be
compiled with the -DLAMMPS_FFMPEG flag. See this section of the manual for instructions on how to do
this.

IMPORTANT NOTE: Because periodic boundary conditions are enforced only on timesteps when neighbor
lists are rebuilt, the coordinates of an atom in the image may be slightly outside the simulation box.

Dumps are performed on timesteps that are a multiple of N (including timestep 0) and on the last timestep of a
minimization if the minimization converges. Note that this means a dump will not be performed on the initial
timestep after the dump command is invoked, if the current timestep is not a multiple of N. This behavior can
be changed via the dump modify first command, which can be useful if the dump command is invoked after a
minimization ended on an arbitrary timestep. N can be changed between runs by using the dump modify
every command.

Dump image filenames must contain a wildcard character "*", so that one image file per snapshot is written.
The "*" character is replaced with the timestep value. For example, tmp.dump.*.jpg becomes tmp.dump.0.jpg,
tmp.dump.10000.jpg, tmp.dump.20000.jpg, etc. Note that the dump modify pad command can be used to
insure all timestep numbers are the same length (e.g. 00010), which can make it easier to convert a series of
images into a movie in the correct ordering.

Dump movie filenames on the other hand, must not have any wildcard character since only one file combining
all images into a single movie will be written by the movie encoder.

The color and diameter settings determine the color and size of atoms rendered in the image. They can be any
atom attribute defined for the dump custom command, including type and element. This includes per-atom
quantities calculated by a compute, fix, or variable, which are prefixed by "c_", "f_", or "v_" respectively.
Note that the diameter setting can be overridden with a numeric value by the optional adiam keyword, in
which case you can specify the diameter setting with any valid atom attribute.

If type is specified for the color setting, then the color of each atom is determined by its atom type. By default
the mapping of types to colors is as follows:

e type 1 =red

® type 2 = green
e type 3 = blue

e type 4 = yellow
® type 5 = aqua

® type 6 = cyan

and repeats itself for types > 6. This mapping can be changed by the dump modify acolor command.

If type is specified for the diameter setting then the diameter of each atom is determined by its atom type. By
default all types have diameter 1.0. This mapping can be changed by the dump modify adiam command.

If element is specified for the color and/or diameter setting, then the color and/or diameter of each atom is
determined by which element it is, which in turn is specified by the element-to-type mapping specified by the
"dump_modify element" command. By default every atom type is C (carbon). Every element has a color and
diameter associated with it, which is the same as the colors and sizes used by the AtomEye visualization
package.

If other atom attributes are used for the color or diameter settings, they are interpreted in the following way.

dump movie command 122

http://mt.seas.upenn.edu/Archive/Graphics/A

LIGGGHTS(R)-PUBLIC Users Manual

If "vx", for example, is used as the color setting, then the color of the atom will depend on the x-component of
its velocity. The association of a per-atom value with a specific color is determined by a "color map", which
can be specified via the dump modify command. The basic idea is that the atom-attribute will be within a
range of values, and every value within the range is mapped to a specific color. Depending on how the color
map is defined, that mapping can take place via interpolation so that a value of -3.2 is halfway between "red"
and "blue", or discretely so that the value of -3.2 is "orange".

If "vx", for example, is used as the diameter setting, then the atom will be rendered using the x-component of
its velocity as the diameter. If the per-atom value <= 0.0, them the atom will not be drawn. Note that
finite-size spherical particles, as defined by atom_style sphere define a per-particle radius or diameter, which
can be used as the diameter setting.

The various kewords listed above control how the image is rendered. As listed below, all of the keywords
have defaults, most of which you will likely not need to change. The dump modify also has options specific to
the dump image style, particularly for assigning colors to atoms, bonds, and other image features.

The adiam keyword allows you to override the diameter setting to a per-atom attribute with a specified
numeric value. All atoms will be drawn with that diameter, e.g. 1.5, which is in whatever distance units the
input script defines, e.g. Angstroms.

The atom keyword allow you to turn off the drawing of all atoms, if the specified value is no.

The bond keyword allows to you to alter how bonds are drawn. A bond is only drawn if both atoms in the
bond are being drawn due to being in the specified group and due to other selection criteria (e.g. region,
threshhold settings of the dump modify command). By default, bonds are drawn if they are defined in the
input data file as read by the read data command. Using none for both the bond color and width value will
turn off the drawing of all bonds.

If atom is specified for the bond color value, then each bond is drawn in 2 halves, with the color of each half
being the color of the atom at that end of the bond.

If type is specified for the color value, then the color of each bond is determined by its bond type. By default
the mapping of bond types to colors is as follows:

e type 1 =red

® type 2 = green
e type 3 = blue

e type 4 = yellow
® type 5 = aqua

® type 6 = cyan

and repeats itself for bond types > 6. This mapping can be changed by the dump modify beolor command.
The bond width value can be a numeric value or atom or type (or none as indicated above).

If a numeric value is specified, then all bonds will be drawn as cylinders with that diameter, e.g. 1.0, which is
in whatever distance units the input script defines, e.g. Angstroms.

If atom is specified for the width value, then each bond will be drawn with a width corresponding to the
minimum diameter of the 2 atoms in the bond.

If type is specified for the width value then the diameter of each bond is determined by its bond type. By
default all types have diameter 0.5. This mapping can be changed by the dump modify bdiam command.

dump movie command 123

LIGGGHTS(R)-PUBLIC Users Manual

The size keyword sets the width and height of the created images, i.e. the number of pixels in each direction.

The view, center, up, zoom, and persp values determine how 3d simulation space is mapped to the 2d plane of
the image. Basically they control how the simulation box appears in the image.

All of the view, center, up, zoom, and persp values can be specified as numeric quantities, whose meaning is
explained below. Any of them can also be specified as an equal-style variable, by using v_name as the value,
where "name" is the variable name. In this case the variable will be evaluated on the timestep each image is
created to create a new value. If the equal-style variable is time-dependent, this is a means of changing the
way the simulation box appears from image to image, effectively doing a pan or fly-by view of your
simulation.

The view keyword determines the viewpoint from which the simulation box is viewed, looking towards the
center point. The theta value is the vertical angle from the +z axis, and must be an angle from 0 to 180
degrees. The phi value is an azimuthal angle around the z axis and can be positive or negative. A value of 0.0
is a view along the +x axis, towards the center point. If theta or phi are specified via variables, then the
variable values should be in degrees.

The center keyword determines the point in simulation space that will be at the center of the image. Cx, Cy,
and C7z are speficied as fractions of the box dimensions, so that (0.5,0.5,0.5) is the center of the simulation
box. These values do not have to be between 0.0 and 1.0, if you want the simulation box to be offset from the
center of the image. Note, however, that if you choose strange values for Cx, Cy, or Cz you may get a blank
image. Internally, Cx, Cy, and Cz are converted into a point in simulation space. If flag is set to "s" for static,
then this conversion is done once, at the time the dump command is issued. If flag is set to "d" for dynamic
then the conversion is performed every time a new image is created. If the box size or shape is changing, this
will adjust the center point in simulation space.

The up keyword determines what direction in simulation space will be "up" in the image. Internally it is stored
as a vector that is in the plane perpendicular to the view vector implied by the theta and pni values, and which
is also in the plane defined by the view vector and user-specified up vector. Thus this internal vector is
computed from the user-specified up vector as

up_internal = view cross (up cross view)

This means the only restriction on the specified up vector is that it cannot be parallel to the view vector,
implied by the theta and phi values.

The zoom keyword scales the size of the simulation box as it appears in the image. The default zfactor value
of 1 should display an image mostly filled by the atoms in the simulation box. A zfactor > 1 will make the
simulation box larger; a zfactor < 1 will make it smaller. Zfactor must be a value > 0.0.

The persp keyword determines how much depth perspective is present in the image. Depth perspective makes
lines that are parallel in simulation space appear non-parallel in the image. A pfactor value of 0.0 means that
parallel lines will meet at infininty (1.0/pfactor), which is an orthographic rendering with no persepctive. A
pfactor value between 0.0 and 1.0 will introduce more perspective. A pfactor value > 1 will create a highly
skewed image with a large amount of perspective.

IMPORTANT NOTE: The persp keyword is not yet supported as an option.

The box keyword determines how the simulation box boundaries are rendered as thin cylinders in the image.
If no is set, then the box boundaries are not drawn and the diam setting is ignored. If yes is set, the 12 edges of
the box are drawn, with a diameter that is a fraction of the shortest box length in x,y,z (for 3d) or x,y (for 2d).
The color of the box boundaries can be set with the dump modify boxcolor command.

dump movie command 124

LIGGGHTS(R)-PUBLIC Users Manual

The axes keyword determines how the coordinate axes are rendered as thin cylinders in the image. If no is set,
then the axes are not drawn and the length and diam settings are ignored. If yes is set, 3 thin cylinders are
drawn to represent the x,y,z axes in colors red,green,blue. The origin of these cylinders will be offset from the
lower left corner of the box by 10%. The length setting determines how long the cylinders will be as a fraction
of the respective box lengths. The diam setting determines their thickness as a fraction of the shortest box
length in x,y,z (for 3d) or x,y (for 2d).

The shiny keyword determines how shiny the objects rendered in the image will appear. The sfactor value
must be a value 0.0 <= sfactor <= 1.0, where sfactor =1 is a highly reflective surface and sfactor =0 is a
rough non-shiny surface.

The ssao keyword turns on/off a screen space ambient occlusion (SSAO) model for depth shading. If yes is
set, then atoms further away from the viewer are darkened via a randomized process, which is perceived as
depth. The calculation of this effect can increase the cost of computing the image by roughly 2x. The strength
of the effect can be scaled by the dfactor parameter. If no is set, no depth shading is performed.

A series of JPG, PNG, or PPM images can be converted into a movie file and then played as a movie using
commonly available tools. Using dump style movie automates this step and avoids the intermediate step of
writing (many) image snapshot file. But LIGGGHTS(R)-PUBLIC has to be compiled with
-DLAMMPS_FFMPEG and an FFmpeg executable have to be installed.

To manually convert JPG, PNG or PPM files into an animated GIF or MPEG or other movie file you can use:

¢ a) Use the ImageMagick convert program.

% convert *.jpg foo.gif
% convert —-loop 1 *.ppm foo.mpg

Animated GIF files from ImageMagick are unoptimized. You can use a program like gifsicle to
optimize and massively shrink them. MPEG files created by ImageMagick are in MPEG-1 format
with rather inefficient compression and low quality.

® b) Use QuickTime.

Select "Open Image Sequence” under the File menu Load the images into QuickTime to animate them
Select "Export" under the File menu Save the movie as a QuickTime movie (*.mov) or in another
format. QuickTime can generate very high quality and efficiently compressed movie files. Some of
the supported formats require to buy a license and some are not readable on all platforms until
specific runtime libraries are installed.

¢ c) Use FFmpeg

FFmpeg is a command line tool that is available on many platforms and allows extremely flexible encoding
and decoding of movies.

cat snap.*.Jjpg | ffmpeg -y -f imagelpipe -c:v mjpeg -1 - -b:v 2000k movie.médv
cat snap.*.ppm | ffmpeg -y -f imagelpipe -c:v ppm -i - -b:v 2400k movie.avi

Frontends for FFmpeg exist for multiple platforms. For more information see the EEmpeg homepage

Play the movie:
¢ a) Use your browser to view an animated GIF movie.
Select "Open File" under the File menu Load the animated GIF file
¢ b) Use the freely available mplayer or ffplay tool to view a movie. Both are available for multiple

OSes and support a large variety of file formats and decoders.

dump movie command 125

http://www.ffmpeg.org/

LIGGGHTS(R)-PUBLIC Users Manual

% mplayer foo.mpg
% ffplay bar.avi

¢ ¢) Use the Pizza.py animate tool, which works directly on a series of image files.

a = animate ("foo*.jpg")

® d) QuickTime and other Windows- or MacOS-based media players can obviously play movie files
directly. Similarly the corresponding tools bundled with Linux desktop environments, however, due
to licensing issues of some of the file formats, some formats may require installing additional
libraries, purchasing a license, or are not supported.

See Section _modify of the manual for information on how to add new compute and fix styles to
LIGGGHTS(R)-PUBLIC to calculate per-atom quantities which could then be output into dump files.

Restrictions:

To write JPG images, you must use the -DLAMMPS_JPEG switch when building LIGGGHTS(R)-PUBLIC
and link with a JPEG library. To write PNG images, you must use the -DLAMMPS_PNG switch when
building LIGGGHTS(R)-PUBLIC and link with a PNG library.

To write movie dumps, you must use the -DLAMMPS_FFMPEG switch when building
LIGGGHTS(R)-PUBLIC and have the FFmpeg executable available on the machine where
LIGGGHTS(R)-PUBLIC is being run.

See the Making LIGGGHTS(R)-PUBLIC section of the documentation for details on how to configure and
compile optional in LIGGGHTS(R)-PUBLIC.

Related commands:

dump, dump modify, undump

Default:
The defaults for the keywords are as follows:

¢ adiam = not specified (use diameter setting)
® atom = yes

¢ bond = none none (if no bonds in system)
® bond = atom 0.5 (if bonds in system)

e size=512512

¢ view = 60 30 (for 3d)

e view = 0 0 (for 2d)

e center =5 0.50.50.5

eup=001 (for 3d)

eup =010 (for 2d)

e zoom = 1.0

® persp = 0.0

® box = yes 0.02

¢ axes =no 0.0 0.0

® shiny = 1.0

® 55320 = NO

dump movie command 126

http://www.sandia.gov/~sjplimp/pizza.html
http://www.sandia.gov/~sjplimp/pizza/doc/animate.html

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

dump_modify command
Syntax:
dump_modify dump-ID keyword values

e dump-ID = ID of dump to modify

¢ one or more keyword/value pairs may be appended

¢ these keywords apply to various dump styles

¢ keyword = append or buffer or element or every or fileper or first or flush or format or image or label
or nfile or pad or precision or region or scale or sort or thresh or unwrap

append arg = yes Or no

buffer arg = yes or no
element args = E1 E2 ... EN, where N = # of atom types

El,...,EN = element name, e.g. C or Fe or Ga
every arg = N

N = dump every this many timesteps

N can be a variable (see below)
fileper arg = Np

Np = write one file for every this many processors
first arg = yes or no
format arg = C-style format string for one line of output
flush arg = yes or no
image arg = yes Or no
label arg = string

string = character string (e.g. BONDS) to use in header of dump local file
nfile arg = Nf

Nf = write this many files, one from each of Nf processors
pad arg = Nchar = # of characters to convert timestep to
precision arg = power-of-10 value from 10 to 1000000
region arg = region-ID or "none"
scale arg = yes or no
sort arg = off or id or N or -N

off = no sorting of per—-atom lines within a snapshot

id = sort per-atom lines by atom ID

N = sort per-atom lines in ascending order by the Nth column
-N = sort per-atom lines in descending order by the Nth column
thresh args = attribute operation wvalue
attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style
operation = "" or ">=" or "==" or "!="

value = numeric value to compare to
these 3 args can be replaced by the word "none" to turn off thresholding
unwrap arg = yes Or no

¢ these keywords apply only to the image and movie styles
¢ keyword = acolor or adiam or amap or bcolor or bdiam or backcolor or boxcolor or color or bitrate

or framerate
acolor args = type color
type = atom type or range of types (see below)
color = name of color or colorl/color2/...
adiam args = type diam
type = atom type or range of types (see below)
diam = diameter of atoms of that type (distance units)
amap args = lo hi style delta N entryl entry2 ... entryN
lo = number or min = lower bound of range of color map
hi = number or max = upper bound of range of color map
style = 2 letters = "c¢" or "d" or "s" plus "a" or "f"

"c" for continuous

dump_modify command 127

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

"d" for discrete
"s" for sequential
"a" for absolute
"f" for fractional

delta = binsize (only used for style "s", otherwise ignored)
binsize = range is divided into bins of this width
N = # of subsequent entries

entry = value color (for continuous style)

value = number or min or max = single value within range
color = name of color used for that value

entry = lo hi color (for discrete style)

lo/hi = number or min or max = lower/upper bound of subset of range
color = name of color used for that subset of values

entry = color (for sequential style)

color = name of color used for a bin of values

backcolor arg = color
color = name of color for background
bcolor args = type color
type = bond type or range of types (see below)
color = name of color or colorl/color2/...
bdiam args = type diam
type = bond type or range of types (see below)
diam = diameter of bonds of that type (distance units)
bitrate arg = rate
rate = target bitrate for movie in kbps
boxcolor arg = color

color = name of color for box lines
color args = name R G B

name = name of color

R,G,B = red/green/blue numeric values from 0.0 to 1.0
framerate arg = fps

fps = frames per second for movie

Examples:

dump_modify
dump_modify
dump_modify
dump_modify
dump_modify
dump_modify
dump_modify

Description:

1 format "%d %d %20.15g %g %g" scale yes

myDump image yes scale no flush yes

1 region mySphere thresh x <0.0 thresh epair >= 3.2

xtcdump precision 10000

1 every 1000 nfile 20

1 every v_myVar

1 amap min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red

Modify the parameters of a previously defined dump command. Not all parameters are relevant to all dump

styles.

These keywords apply to various dump styles, including the dump image and dump movie styles. The
description gives details.

The append keyword applies to all dump styles except cfg and xtc and dcd. It also applies only to text output

files, not to binary or gzipped or image/movie files. If specified as yes, then dump snapshots are appended to

the end of an existing dump file. If specified as no, then a new dump file will be created which will overwrite
an existing file with the same name. This keyword can only take effect if the dump_modify command is used
after the dump command, but before the first command that causes dump snapshots to be output, e.g. a run or
minimize command. Once the dump file has been opened, this keyword has no further effect.

The buffer keyword applies only to dump styles atom, custom, local, and xyz. It also applies only to text
output files, not to binary or gzipped files. If specified as yes, which is the default, then each processor writes

dump_modify command

128

LIGGGHTS(R)-PUBLIC Users Manual

its output into an internal text buffer, which is then sent to the processor(s) which perform file writes, and
written by those processors(s) as one large chunk of text. If specified as no, each processor sends its per-atom
data in binary format to the processor(s) which perform file wirtes, and those processor(s) format and write it
line by line into the output file.

The buffering mode is typically faster since each processor does the relatively expensive task of formatting
the output for its own atoms. However it requires about twice the memory (per processor) for the extra
buffering.

The element keyword applies only to the the dump cfg, xyz, and image styles. It associates element names
(e.g. H, C, Fe) with LIGGGHTS(R)-PUBLIC atom types. See the list of element names at the bottom of this

page.

In the case of dump cfg, this allows the AtomEye visualization package to read the dump file and render
atoms with the appropriate size and color.

In the case of dump image, the output images will follow the same AtomEye convention. An element name is
specified for each atom type (1 to Ntype) in the simulation. The same element name can be given to multiple
atom types.

In the case of xyz format dumps, there are no restrictions to what label can be used as an element name. Any
whitespace separated text will be accepted.

The every keyword changes the dump frequency originally specified by the dump command to a new value.
The every keyword can be specified in one of two ways. It can be a numeric value in which case it must be >
0. Or it can be an equal-style variable, which should be specified as v_name, where name is the variable
name.

In this case, the variable is evaluated at the beginning of a run to determine the next timestep at which a dump
snapshot will be written out. On that timestep the variable will be evaluated again to determine the next
timestep, etc. Thus the variable should return timestep values. See the stagger() and logfreq() and stride()
math functions for equal-style variables, as examples of useful functions to use in this context. Other similar
math functions could easily be added as options for equal-style variables. Also see the next() function, which
allows use of a file-style variable which reads successive values from a file, each time the variable is
evaluated. Used with the every keyword, if the file contains a list of ascending timesteps, you can output
snapshots whenever you wish.

Note that when using the variable option with the every keyword, you need to use the first option if you want
an initial snapshot written to the dump file. The every keyword cannot be used with the dump dcd style.

For example, the following commands will write snapshots at timesteps
0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreqg(10,3,10)
dump 1 all atom 100 tmp.dump
dump_modify 1 every v_s first yes

The following commands would write snapshots at the timesteps listed in file tmp.times:

variable f file tmp.times
s equal next (f)

dump 1 all atom 100 tmp.dump
1

dump_modify

variable

every v_S

IMPORTANT NOTE: When using a file-style variable with the every keyword, the file of timesteps must list

dump_modify command 129

http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A

LIGGGHTS(R)-PUBLIC Users Manual

a first timestep that is beyond the current timestep (e.g. it cannot be 0). And it must list one or more timesteps
beyond the length of the run you perform. This is because the dump command will generate an error if the
next timestep it reads from the file is not a value greater than the current timestep. Thus if you wanted output
on steps 0,15,100 of a 100-timestep run, the file should contain the values 15,100,101 and you should also use
the dump_modify first command. Any final value > 100 could be used in place of 101.

The first keyword determines whether a dump snapshot is written on the very first timestep after the dump
command is invoked. This will always occur if the current timestep is a multiple of N, the frequency specified
in the dump command, including timestep 0. But if this is not the case, a dump snapshot will only be written if
the setting of this keyword is yes. If it is no, which is the default, then it will not be written.

The flush keyword determines whether a flush operation is invoked after a dump snapshot is written to the
dump file. A flush insures the output in that file is current (no buffering by the OS), even if
LIGGGHTS(R)-PUBLIC halts before the simulation completes. Flushes cannot be performed with dump style
xtc.

The text-based dump styles have a default C-style format string which simply specifies %d for integers and
%g for real values. The format keyword can be used to override the default with a new C-style format string.
Do not include a trailing "\n" newline character in the format string. This option has no effect on the dcd and
xtc dump styles since they write binary files. Note that for the cfg style, the first two fields (atom id and type)
are not actually written into the CFG file, though you must include formats for them in the format string.

The fileper keyword is documented below with the nfile keyword.

The image keyword applies only to the dump afom style. If the image value is yes, 3 flags are appended to
each atom's coords which are the absolute box image of the atom in each dimension. For example, an x image
flag of -2 with a normalized coord of 0.5 means the atom is in the center of the box, but has passed thru the
box boundary 2 times and is really 2 box lengths to the left of its current coordinate. Note that for dump style
custom these various values can be printed in the dump file by using the appropriate atom attributes in the
dump command itself.

The label keyword applies only to the dump local style. When it writes local information, such as bond or
angle topology to a dump file, it will use the specified label to format the header. By default this includes 2
lines:

ITEM: NUMBER OF ENTRIES
ITEM: ENTRIES ...

The word "ENTRIES" will be replaced with the string specified, e.g. BONDS or ANGLES.

The nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the specified
dump file name, for all dump styles except the dcd, image, movie, xtc, and xyz styles (for which "%" is not
allowed). As explained on the dump command doc page, the "%" character causes the dump file to be written
in pieces, one piece for each of P processors. By default P = the number of processors the simulation is
running on. The nfile or fileper keyword can be used to set P to a smaller value, which can be more efficient
when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on
100 processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and
the next 24 processors and write it to a dump file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example,

if Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and
write it to a dump file.

dump_modify command 130

LIGGGHTS(R)-PUBLIC Users Manual

The pad keyword only applies when the dump filename is specified with a wildcard "*" character which
becomes the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded
length, e.g. 100 or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading
zeroes so they are all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000.
This can be useful so that post-processing programs can easily read the files in ascending timestep order.

The precision keyword only applies to the dump xzc style. A specified value of N means that coordinates are
stored to 1/N nanometer accuracy, e.g. for N = 1000, the coordinates are written to 1/1000 nanometer
accuracy.

The region keyword only applies to the dump custom, cfg, image, and movie styles. If specified, only atoms in
the region will be written to the dump file or included in the image/movie. Only one region can be applied as a
filter (the last one specified). See the region command for more details. Note that a region can be defined as
the "inside" or "outside" of a geometric shape, and it can be the "union" or "intersection" of a series of simpler
regions.

The scale keyword applies only to the dump arom style. A scale value of yes means atom coords are written in
normalized units from 0.0 to 1.0 in each box dimension. If the simluation box is triclinic (tilted), then all atom
coords will still be between 0.0 and 1.0. A value of no means they are written in absolute distance units (e.g.
Angstroms or sigma).

The sort keyword determines whether lines of per-atom output in a snapshot are sorted or not. A sort value of
off means they will typically be written in indeterminate order, either in serial or parallel. This is the case even
in serial if the atom modify sort option is turned on, which it is by default, to improve performance. A sort
value of id means sort the output by atom ID. A sort value of N or -N means sort the output by the value in the
Nth column of per-atom info in either ascending or descending order.

The dump local style cannot be sorted by atom ID, since there are typically multiple lines of output per atom.
Some dump styles, such as ded and xtc, require sorting by atom ID to format the output file correctly. If
multiple processors are writing the dump file, via the "%" wildcard in the dump filename, then sorting cannot
be performed.

IMPORTANT NOTE: Unless it is required by the dump style, sorting dump file output requires extra
overhead in terms of CPU and communication cost, as well as memory, versus unsorted output.

The thresh keyword only applies to the dump custom, cfg, image, and movie styles. Multiple thresholds can be
specified. Specifying "none" turns off all threshold criteria. If thresholds are specified, only atoms whose
attributes meet all the threshold criteria are written to the dump file or included in the image. The possible
attributes that can be tested for are the same as those that can be specified in the dump custom command, with
the exception of the element attribute, since it is not a numeric value. Note that different attributes can be
output by the dump custom command than are used as threshold criteria by the dump_modify command. E.g.
you can output the coordinates and stress of atoms whose energy is above some threshold.

The unwrap keyword only applies to the dump dcd and xtc styles. If set to yes, coordinates will be written
"unwrapped" by the image flags for each atom. Unwrapped means that if the atom has passed thru a periodic
boundary one or more times, the value is printed for what the coordinate would be if it had not been wrapped
back into the periodic box. Note that these coordinates may thus be far outside the box size stored with the
snapshot.

These keywords apply only to the dump image and dump movie styles. Any keyword that affects an image,
also affects a movie, since the movie is simply a collection of images. Some of the keywords only affect the

dump_modify command 131

LIGGGHTS(R)-PUBLIC Users Manual
dump movie style. The description gives details.

The acolor keyword can be used with the dump image command, when its atom color setting is type, to set
the color that atoms of each type will be drawn in the image.

The specified type should be an integer from 1 to Ntypes = the number of atom types. A wildcard asterisk can
be used in place of or in conjunction with the fype argument to specify a range of atom types. This takes the
form "*" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk
means all types from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character,
e.g. red/green/blue. In the former case, that color is assigned to all the specified atom types. In the latter case,
the list of colors are assigned in a round-robin fashion to each of the specified atom types.

The adiam keyword can be used with the dump image command, when its atom diameter setting is type, to set
the size that atoms of each type will be drawn in the image. The specified type should be an integer from 1 to
Ntypes. As with the acolor keyword, a wildcard asterisk can be used as part of the type argument to specify a
range of atomt types. The specified diam is the size in whatever distance units the input script is using, e.g.
Angstroms.

The amap keyword can be used with the dump image command, with its atom keyword, when its atom setting
is an atom-attribute, to setup a color map. The color map is used to assign a specific RGB (red/green/blue)
color value to an individual atom when it is drawn, based on the atom's attribute, which is a numeric value,
e.g. its x-component of velocity if the atom-attribute "vx" was specified.

The basic idea of a color map is that the atom-attribute will be within a range of values, and that range is
associated with a a series of colors (e.g. red, blue, green). An atom's specific value (vx = -3.2) can then
mapped to the series of colors (e.g. halfway between red and blue), and a specific color is determined via an
interpolation procedure.

There are many possible options for the color map, enabled by the amap keyword. Here are the details.

The lo and hi settings determine the range of values allowed for the atom attribute. If numeric values are used
for lo and/or hi, then values that are lower/higher than that value are set to the value. Le. the range is static. If
lo is specified as min or hi as max then the range is dynamic, and the lower and/or upper bound will be
calculated each time an image is drawn, based on the set of atoms being visualized.

The style setting is two letters, such as "ca". The first letter is either "c" for continuous, "d" for discrete, or "s"
for sequential. The second letter is either "a" for absolute, or "f" for fractional.

A continuous color map is one in which the color changes continuously from value to value within the range.
A discrete color map is one in which discrete colors are assigned to sub-ranges of values within the range. A
sequential color map is one in which discrete colors are assigned to a sequence of sub-ranges of values
covering the entire range.

An absolute color map is one in which the values to which colors are assigned are specified explicitly as
values within the range. A fractional color map is one in which the values to which colors are assigned are
specified as a fractional portion of the range. For example if the range is from -10.0 to 10.0, and the color red
is to be assigned to atoms with a value of 5.0, then for an absolute color map the number 5.0 would be used.
But for a fractional map, the number 0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.

dump_modify command 132

LIGGGHTS(R)-PUBLIC Users Manual

The delta setting must be specified for all styles, but is only used for the sequential style; otherwise the value
is ignored. It specifies the bin size to use within the range for assigning consecutive colors to. For example, if
the range is from -10.0 to 10.0 and a delta of 1.0 is used, then 20 colors will be assigned to the range. The first
will be from -10.0 <= colorl < -9.0, then 2nd from -9.0 <= color2 < -8.0, etc.

The N setting is how many entries follow. The format of the entries depends on whether the color map style is
continuous, discrete or sequential. In all cases the color setting can be any of the 140 pre-defined colors (see
below) or a color name defined by the dump_modify color option.

For continuous color maps, each entry has a value and a color. The value is either a number within the range
of values or min or max. The value of the first entry must be min and the value of the last entry must be max.
Any entries in between must have increasing values. Note that numeric values can be specified either as

absolute numbers or as fractions (0.0 to 1.0) of the range, depending on the "a" or "f" in the style setting for
the color map.

Here is how the entries are used to determine the color of an individual atom, given the value X of its atom
attribute. X will fall between 2 of the entry values. The color of the atom is linearly interpolated (in each of
the RGB values) between the 2 colors associated with those entries. For example, if X =-5.0 and the 2
surrounding entries are "red" at -10.0 and "blue" at 0.0, then the atom's color will be halfway between "red"
and "blue", which happens to be "purple".

For discrete color maps, each entry has a lo and hi value and a color. The lo and hi settings are either numbers
within the range of values or /o can be min or hi can be max. The lo and hi settings of the last entry must be
min and max. Other entries can have any /o and hi values and the sub-ranges of different values can overlap.
Note that numeric /o and hi values can be specified either as absolute numbers or as fractions (0.0 to 1.0) of

non

the range, depending on the "a" or "f" in the style setting for the color map.

Here is how the entries are used to determine the color of an individual atom, given the value X of its atom
attribute. The entries are scanned from first to last. The first time that /o <= X <= hi, X is assigned the color
associated with that entry. You can think of the last entry as assigning a default color (since it will always be
matched by X), and the earlier entries as colors that override the default. Also note that no interpolation of a
color RGB is done. All atoms will be drawn with one of the colors in the list of entries.

For sequential color maps, each entry has only a color. Here is how the entries are used to determine the color
of an individual atom, given the value X of its atom attribute. The range is partitioned into N bins of width
binsize. Thus X will fall in a specific bin from 1 to N, say the Mth bin. If it falls on a boundary between 2
bins, it is considered to be in the higher of the 2 bins. Each bin is assigned a color from the E entries. If E < N,
then the colors are repeated. For example if 2 entries with colors red and green are specified, then the odd
numbered bins will be red and the even bins green. The color of the atom is the color of its bin. Note that the
sequential color map is really a shorthand way of defining a discrete color map without having to specify
where all the bin boundaries are.

The backcolor sets the background color of the images. The color name can be any of the 140 pre-defined
colors (see below) or a color name defined by the dump_modify color option.

The bcolor keyword can be used with the dump image command, with its bond keyword, when its color
setting is type, to set the color that bonds of each type will be drawn in the image.

The specified fype should be an integer from 1 to Nbondtypes = the number of bond types. A wildcard
asterisk can be used in place of or in conjunction with the fype argument to specify a range of bond types. This
takes the form "*" or "*n" or "n*" or "m*n". If N = the number of bond types, then an asterisk with no
numeric values means all types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A
trailing asterisk means all types from n to N (inclusive). A middle asterisk means all types from m to n
(inclusive).

dump_modify command 133

LIGGGHTS(R)-PUBLIC Users Manual

The specified color can be a single color which is any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option. Or it can be two or more colors separated by a "/" character,
e.g. red/green/blue. In the former case, that color is assigned to all the specified bond types. In the latter case,
the list of colors are assigned in a round-robin fashion to each of the specified bond types.

The bdiam keyword can be used with the dump image command, with its bond keyword, when its diam
setting is fype, to set the diameter that bonds of each type will be drawn in the image. The specified type
should be an integer from 1 to Nbondtypes. As with the bcolor keyword, a wildcard asterisk can be used as
part of the type argument to specify a range of bond types. The specified diam is the size in whatever distance
units you are using, e.g. Angstroms.

The bitrate keyword can be used with the dump movie command to define the size of the resulting movie file
and its quality via setting how many kbits per second are to be used for the movie file. Higher bitrates require
less compression and will result in higher quality movies. The quality is also determined by the compression
format and encoder. The default setting is 2000 kbit/s, which will result in average quality with older
compression formats.

IMPORTANT NOTE: Not all movie file formats supported by dump movie allow the bitrate to be set. If not,
the setting is silently ignored.

The boxcolor keyword sets the color of the simulation box drawn around the atoms in each image. See the
"dump image box" command for how to specify that a box be drawn. The color name can be any of the 140
pre-defined colors (see below) or a color name defined by the dump_modify color option.

The color keyword allows definition of a new color name, in addition to the 140-predefined colors (see
below), and associates 3 red/green/blue RGB values with that color name. The color name can then be used
with any other dump_modify keyword that takes a color name as a value. The RGB values should each be
floating point values between 0.0 and 1.0 inclusive.

When a color name is converted to RGB values, the user-defined color names are searched first, then the 140
pre-defined color names. This means you can also use the color keyword to overwrite one of the pre-defined
color names with new RBG values.

The framerate keyword can be used with the dump movie command to define the duration of the resulting
movie file. Movie files written by the dump movie command have a default frame rate of 24 frames per
second and the images generated will be converted at that rate. Thus a sequence of 1000 dump images will
result in a movie of about 42 seconds. To make a movie run longer you can either generate images more
frequently or lower the frame rate. To speed a movie up, you can do the inverse. Using a frame rate higher
than 24 is not recommended, as it will result in simply dropping the rendered images. It is more efficient to
dump images less frequently.

Restrictions: none
Related commands:
dump, dump image, undum
Default:

The option defaults are

¢ append = no

dump_modify command 134

LIGGGHTS(R)-PUBLIC Users Manual

e buffer = yes for dump styles atom, custom, loca, and xyz

e element = "C" for every atom type

¢ every = whatever it was set to via the dump command

e fileper = # of processors

e first = no

e flush = yes

e format = %d and %g for each integer or floating point value
® image = no

¢ label = ENTRIES

e nfile=1
epad=0

® precision = 1000
® region = none

e scale = yes

e sort = off for dump styles atom, custom, cfg, and local
e sort = id for dump styles dcd, xtc, and xyz
e thresh = none

® unwrap = no

e acolor = * red/green/blue/yellow/aqua/cyan
¢ adiam = * 1.0
¢ amap = min max cf 0.0 2 min blue max red
® backcolor = black
® beolor = * red/green/blue/yellow/aqua/cyan
® bdiam = * 0.5

® bitrate = 2000

® boxcolor = yellow
e color = 140 color names are pre-defined as listed below
¢ framerate = 24

These are the standard 109 element names that LIGGGHTS(R)-PUBLIC pre-defines for use with the dump
image and dump_modify commands.

° 1_10 - llHll’ "HC", "Li”, "BC", IIBII’ "C", llNll’ "O”, "F", "NC"

¢ 11-20 ="Na", "Mg", "Al", "Si", "P", "S", "CI", "Ar", "K", "Ca"
®21-30 ="Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn"
®31-40 ="Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr"

¢ 41-50 = "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn"
® 51-60 ="Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd"

¢ 61-70 = "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb"
¢ 71-80 = "Lu", "Hf", "Ta", "W", "Re", "Os", "It", "Pt", "Au", "Hg"

¢ 81-90 ="TI", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th"

¢ 91-100 = "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm"
¢ 101-109 ="Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt"

These are the 140 colors that LIGGGHTS(R)-PUBLIC pre-defines for use with the dump image and
dump_modify commands. Additional colors can be defined with the dump_modify color command. The 3
numbers listed for each name are the RGB (red/green/blue) values. Divide each value by 255 to get the
equivalent 0.0 to 1.0 value.

aliceblue = 240,
248, 255

antiquewhite = 250, 235,
215

aqua = 0, 255, 255

aquamarine = 127,
255,212

azure = 240, 255,
255

beige = 245, 245, . _ _ blanchedalmond = _
220 bisque = 255, 228, 196 [black =0, 0, 0 255, 255. 205 blue =0, 0, 255
dump_modify command 135

LIGGGHTS(R)-PUBLIC Users Manual

blueviolet = 138,
43, 226

brown = 165, 42, 42

burlywood =222, 184,
135

cadetblue = 95, 158,
160

chartreuse = 127,
255,0

chocolate = 210,
105, 30

coral = 255, 127, 80

cornflowerblue = 100,
149, 237

cornsilk = 255, 248,
220

crimson = 220,
20, 60

cyan =0, 255,255 |darkblue =0, 0,139 |darkcyan = 0, 139, 139 ?gjfgl‘;lie;“]"d - ?nglﬁrgg =169,
darkgreen = 0, 100, |darkkhaki = 189, 183, |darkmagenta = 139, 0, [darkolivegreen = 85, |darkorange =

0 107 139 107, 47 255, 140, 0
S 1 o= 135,0,0 [fablnon <20, g <143 it
darkslategray = 47, |darkturquoise = 0, 206, |darkviolet =148,0, [|deeppink =255, 20, |deepskyblue =0,
79,79 209 211 147 191, 255

dimgray = 105, 105,
105

dodgerblue = 30, 144,
255

firebrick = 178, 34, 34

floralwhite = 255,
250, 240

forestgreen = 34,
139, 34

fuchsia = 255, 0,
255

gainsboro = 220, 220,
220

ghostwhite = 248, 248,
255

gold = 255, 215, 0

goldenrod = 218,
165, 32

gray = 128, 128,

green =0, 128, 0

greenyellow = 173,

honeydew = 240,

hotpink = 255,

128 255, 47 255, 240 105, 180
indianred = 205, 92,|. ..) _ khaki = 240, 230, lavender = 230,
9 indigo =75, 0, 130 ivory = 255, 240, 240 140 230. 250
lavenderblush = _ lemonchiffon = 255, |lightblue = 173, 216, |lightcoral = 240,
255, 240, 245 lawngreen =124, 252.0 1550, 205 230 128, 128
lightcyan = 224, lightgoldenrodyellow = [lightgreen = 144, 238, [lightgrey = 211, lightpink = 255,
255, 255 250, 250, 210 144 211,211 182, 193
lightsalmon = 255, (lightseagreen = 32, 178, |lightskyblue = 135, lightslategray = 119, |lightsteelblue =
160, 122 170 206, 250 136, 153 176, 196, 222

lightyellow = 255,

limegreen = 50, 205,

linen = 250, 240,

magenta = 255,

255, 224 lime = 0, 255, 0 50 230 0,255
maroon = 128. 0. 0 mediumaquamarine = |[mediumblue =0, 0, |mediumorchid = mediumpurple =

aroon =125V 1102, 205, 170 205 186, 85,211 147, 112,219
mediumseagreen = |mediumslateblue = 123, |mediumspringgreen = |mediumturquoise = |mediumvioletred
60, 179, 113 104, 238 0, 250, 154 72,209, 204 =199, 21, 133
midnightblue = 25, |mintcream = 245, 255, |mistyrose = 255, 228, |moccasin = 255, navajowhite =
25,112 250 225 228, 181 255,222,173

B B . olivedrab = 107, orange = 255,

navy =0, 0, 128 oldlace = 253, 245, 230 |olive = 128, 128, 0 142, 35 165. 0
orangered = 255, . palegoldenrod = 238, |palegreen = 152, paleturquoise =
69,0 orchid =218, 112, 214 153, 170 251, 152 175, 238, 238

palevioletred = 219,
112, 147

papayawhip = 255, 239,
213

peachpuff = 255, 239,
213

peru = 205, 133, 63

pink = 255, 192,
203

plum =221, 160, |powderblue = 176, 224, _ _ rosybrown =
21 230 purple = 128, 0, 128 |red =255, 0,0 188, 143, 143
royalblue = 65, 105, |saddlebrown = 139, 69, |salmon = 250, 128, sandybrown = 244, [seagreen = 46,
225 19 114 164, 96 139, 87

seashell = 255, 245,
238

sienna = 160, 82, 45

silver = 192, 192, 192

skyblue = 135, 206,
235

slateblue = 106,
90, 205

slategray = 112, _ springgreen = 0, 255, [steelblue = 70, 130, [tan =210, 180,
128, 144 snow =255,250,230 1, 180 140

teal =0, 128, 128 |thistle =216, 191,216 |tomato = 253, 99, 71

dump_modify command 136

LIGGGHTS(R)-PUBLIC Users Manual

245, 245

yellow = 255, 255, 0

turquoise = 64, 224, |violet = 238,
208 130, 238
\1V7hgeat =245,222, white = 255, 255, 255 whitesmoke = 245, yellowgreen =

154, 205, 50

dump_modify command

137

LIGGGHTS(R)-PUBLIC Users Manual

LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBILIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

dump_modify command

Syntax:

dump_modify dump-ID keyword values

e dump-ID = ID of dump to modify

¢ one or more keyword/value pairs may be appended

¢ these keywords apply to the dump custom/vtk style

¢ keyword = binary or element or every or fileper or first or label or nfile or pad or region or sort or

thresh

binary arg =
element args =
El,...,EN = element

every arg
N =

Np =
first arg
label arg

string =

nfile arg
Nf =
pad arg =

region arg
sort arg =

off =
id =
N:
_N:

dump every this

N can be a variable
fileper arg =
write one file

write this many files,

yes or no

El E2 where N =

e.g.

EN,
name,

of atom types
C or Fe or Ga
=N
many timesteps

(see below)
Np
for every this many processors
= yes or no
= string

character string to use in header of legacy VTK file
= Nf
one from each of Nf processors
Nchar = # of characters to convert timestep to

= region-ID or "none"

off or id or N or -N

no sorting of per-atom lines within a snapshot

sort per-atom lines by atom ID

sort per—-atom lines in ascending order by the Nth column
sort per-atom lines in descending order by the Nth column
thresh args

= attribute operation wvalue

attribute = same attributes (x,fy,etotal,sxx,etc) used by dump custom style
operation = "" or ">=" or "==" or "!="
value = numeric value to compare to

these 3

Examples:

dump_modify dmpvtp
dump_modify e_data
dump_modify dmpvtk
dump_modify dmpvtk

Description:

args can be replaced by the word "none" to turn off thresholding

binary yes

region mySphere thresh x <0.0 thresh ervel >= 0.2
every 1000 nfile 20

every v_myVvVar

Modify the parameters of a previously defined dump command.

These keywords apply to the dump custom/vtk style. The description gives details.

The binary keyword, if specified as yes, causes the output to be written in binary format. If specified as no,
which is the default, the data is written in ASCII format to the output file.

The element keyword associates element names (e.g. H, C, Fe) with LIGGGHTS(R)-PUBLIC atom types.
There are no restrictions to what label can be used as an element name. Any whitespace separated text will be

dump_modify command 138

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

accepted.

The every keyword changes the dump frequency originally specified by the dump custom/vtk command to a
new value. The every keyword can be specified in one of two ways. It can be a numeric value in which case it
must be > 0. Or it can be an gqual-style variable, which should be specified as v_name, where name is the
variable name.

In this case, the variable is evaluated at the beginning of a run to determine the next timestep at which a dump
snapshot will be written out. On that timestep the variable will be evaluated again to determine the next
timestep, etc. Thus the variable should return timestep values. See the stagger() and logfreq() and stride()
math functions for equal-style variables, as examples of useful functions to use in this context. Other similar
math functions could easily be added as options for equal-style variables. Also see the next() function, which
allows use of a file-style variable which reads successive values from a file, each time the variable is
evaluated. Used with the every keyword, if the file contains a list of ascending timesteps, you can output
snapshots whenever you wish.

Note that when using the variable option with the every keyword, you need to use the first option if you want
an initial snapshot written to the dump file.

For example, the following commands will write snapshots at timesteps
0,10,20,30,100,200,300,1000,2000,etc:

variable s equal logfreq(l10,3,10)
dump 1 all custom/vtk 100 tmp.dump*.vtk vx vy vz
dump_modify 1 every v_s first yes

The following commands would write snapshots at the timesteps listed in file tmp.times:

variable f file tmp.times

variable s equal next (f)

dump 1 all custom/vtk 100 tmp.dump*.vtk vx vy vz
dump_modify 1 every v_s

IMPORTANT NOTE: When using a file-style variable with the every keyword, the file of timesteps must list
a first timestep that is beyond the current timestep (e.g. it cannot be 0). And it must list one or more timesteps
beyond the length of the run you perform. This is because the dump command will generate an error if the
next timestep it reads from the file is not a value greater than the current timestep. Thus if you wanted output
on steps 0,15,100 of a 100-timestep run, the file should contain the values 15,100,101 and you should also use
the dump_modify first command. Any final value > 100 could be used in place of 101.

The first keyword determines whether a dump snapshot is written on the very first timestep after the dump
command is invoked. This will always occur if the current timestep is a multiple of N, the frequency specified
in the dump custom/vtk command, including timestep 0. But if this is not the case, a dump snapshot will only
be written if the setting of this keyword is yes. If it is no, which is the default, then it will not be written.

The fileper keyword is documented below with the nfile keyword.

When writing to legacy VTK files, the dump custom/vtk style will use the specified label as the header line.
By default this header line is:

Generated by LIGGGHTS (R)-PUBLIC

The nfile or fileper keywords can be used in conjunction with the "%" wildcard character in the specified
dump file name, if an XML file format was specified. As explained on the dump custom vtk command doc
page, the "%" character causes the dump file to be written in pieces, one piece for each of P processors. By

dump_modify command 139

LIGGGHTS(R)-PUBLIC Users Manual

default P = the number of processors the simulation is running on. The nfile or fileper keyword can be used to
set P to a smaller value, which can be more efficient when running on a large number of processors.

The nfile keyword sets P to the specified Nf value. For example, if Nf = 4, and the simulation is running on
100 processors, 4 files will be written, by processors 0,25,50,75. Each will collect information from itself and
the next 24 processors and write it to a dump file.

For the fileper keyword, the specified value of Np means write one file for every Np processors. For example,
if Np = 4, every 4th processor (0,4,8,12,etc) will collect information from itself and the next 3 processors and
write it to a dump file.

The pad keyword only applies when the dump filename is specified with a wildcard "*" character which
becomes the timestep. If pad is 0, which is the default, the timestep is converted into a string of unpadded
length, e.g. 100 or 12000 or 2000000. When pad is specified with Nchar > 0, the string is padded with leading
zeroes so they are all the same length = Nchar. For example, pad 7 would yield 0000100, 0012000, 2000000.
This can be useful so that post-processing programs can easily read the files in ascending timestep order.

If the region keyword is specified, only atoms in the region will be written to the dump file. Only one region

can be applied as a filter (the last one specified). See the region command for more details. Note that a region
can be defined as the "inside" or "outside" of a geometric shape, and it can be the "union" or "intersection" of
a series of simpler regions.

The sort keyword determines whether lines of per-atom output in a snapshot are sorted or not. A sort value of
off means they will typically be written in indeterminate order, either in serial or parallel. This is the case even
in serial if the atom modify sort option is turned on, which it is by default, to improve performance. A sort
value of id means sort the output by atom ID. A sort value of N or -N means sort the output by the value in the
Nth column of per-atom info in either ascending or descending order.

IMPORTANT NOTE: Unless it is required by the dump style, sorting dump file output requires extra
overhead in terms of CPU and communication cost, as well as memory, versus unsorted output.

Using the thresh keyword, multiple thresholds can be specified. Specifying "none" turns off all threshold
criteria. If thresholds are specified, only atoms whose attributes meet all the threshold criteria are written to
the dump file. The possible attributes that can be tested for are the same as those that can be specified in the
dump custom/vtk command, with the exception of the element attribute, since it is not a numeric value. Note
that different attributes can be output by the dump custom/vtk command than are used as threshold criteria by
the dump_modify command. E.g. you can output the coordinates and stress of atoms whose energy is above
some threshold.

Restrictions: none
Related commands:
dump, dump custom/vtk, dump image, undump
Default:
The option defaults are
® binary = no
¢ element = "C" for every atom type
e every = whatever it was set to via the dump custom/vtk command

e fileper = # of processors

dump_modify command 140

LIGGGHTS(R)-PUBLIC Users Manual

e first = no

¢ label = "Generated by LIGGGHTS"
¢ nfile = 1

epad=0

® region = none

e sort = off

e thresh = none

dump_modify command 141

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

echo command
Syntax:
echo style
¢ style = none or screen or log or both
Examples:

echo both
echo log

Description:

This command determines whether LIGGGHTS(R)-PUBLIC echoes each input script command to the screen
and/or log file as it is read and processed. If an input script has errors, it can be useful to look at echoed output
to see the last command processed.

The command-line switch -echo can be used in place of this command.

Restrictions: none

Related commands: none

Default:

echo log

echo command 142

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands
fix adapt command
Syntax:
fix ID group-ID adapt N attribute args ... keyword value

¢ ID, group-ID are documented in fix command

e adapt = style name of this fix command

¢ N = adapt simulation settings every this many timesteps
® one or more attribute/arg pairs may be appended

e attribute = pair or atom

palir args = pstyle pparam I J v_name
pstyle = pair style name, e.g. soft
pparam = parameter to adapt over time
I,J = type pair(s) to set parameter for
v_name = variable with name that calculates value of pparam
atom args = aparam v_name
aparam = parameter to adapt over time
v_name = variable with name that calculates value of aparam

e zero or more keyword/value pairs may be appended
¢ keyword = scale or reset

scale value = no or yes
no = the variable value is the new setting
yes = the variable value multiplies the original setting
reset value = no or yes
no = values will remain altered at the end of a run
yes = reset altered values to their original values at the end of a run

Examples:

fix 1 all adapt 1 pair soft a 1 1 v_prefactor
fix 1 all adapt 1 pair soft a 2* 3 v_prefactor
fix 1 all adapt 10 atom diameter v_size

Description:

Change or adapt one or more specific simulation attributes or settings over time as a simulation runs. Pair
potential and K-space and atom attributes which can be varied by this fix are discussed below. Many other
fixes can also be used to time-vary simulation parameters, e.g. the "fix deform" command will change the
simulation box size/shape and the "fix move" command will change atom positions and velocities in a
prescribed manner. Also note that many commands allow variables as arguments for specific parameters, if
described in that manner on their doc pages. An equal-style variable can calculate a time-dependent quantity,
so this is another way to vary a simulation parameter over time.

If N is specified as 0, the specified attributes are only changed once, before the simulation begins. This is all
that is needed if the associated variables are not time-dependent. If N > 0, then changes are made every N
steps during the simulation, presumably with a variable that is time-dependent.

Depending on the value of the reset keyword, attributes changed by this fix will or will not be reset back to

their original values at the end of a simulation. Even if reset is specified as yes, a restart file written during a
simulation will contain the modified settings.

fix adapt command 143

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

If the scale keyword is set to no, then the value the parameter is set to will be whatever the variable generates.
If the scale keyword is set to yes, then the value of the altered parameter will be the initial value of that
parameter multiplied by whatever the variable generates. l.e. the variable is now a "scale factor" applied in
(presumably) a time-varying fashion to the parameter. Internally, the parameters themselves are actually
altered; make sure you use the reset yes option if you want the parameters to be restored to their initial values
after the run.

The pair keyword enables various parameters of potentials defined by the pair_style command to be changed,
if the pair style supports it. Note that the pair_style and pair_coeff commands must be used in the usual
manner to specify these parameters initially; the fix adapt command simply overrides the parameters.

The pstyle argument is the name of the pair style. If pair_style hybrid or hybrid/overlay is used, pstyle should
be a sub-style name. For example, pstyle could be specified as "soft" or "lubricate". The pparam argument is
the name of the parameter to change. This is the current list of pair styles and parameters that can be varied by
this fix. See the doc pages for individual pair styles and their energy formulas for the meaning of these
parameters:

|&ft |a |type pairs
IMPORTANT NOTE: It is easy to add new potentials and their parameters to this list. All it typically takes is
adding an extract() method to the pair_*.cpp file associated with the potential.

Some parameters are global settings for the pair style, e.g. the viscosity setting "mu" for pair_style lubricate.
Other parameters apply to atom type pairs within the pair style, e.g. the prefactor "a" for pair_style soft.

If a type pair parameter is specified, the / and J settings should be specified to indicate which type pairs to
apply it to. If a global parameter is specified, the / and J settings still need to be specified, but are ignored.

Similar to the pair coeff command, I and J can be specified in one of two ways. Explicit numeric values can
be used for each, as in the 1st example above. I <=1 is required. LIGGGHTS(R)-PUBLIC sets the coefficients
for the symmetric J,I interaction to the same values.

A wild-card asterisk can be used in place of or in conjunction with the I.J arguments to set the coefficients for
multiple pairs of atom types. This takes the form "*" or "*n" or "n*" or "m*n". If N = the number of atom
types, then an asterisk with no numeric values means all types from 1 to N. A leading asterisk means all types
from 1 to n (inclusive). A trailing asterisk means all types from n to N (inclusive). A middle asterisk means all
types from m to n (inclusive). Note that only type pairs with I <=J are considered; if asterisks imply type
pairs where J < I, they are ignored.

IMPROTANT NOTE: If pair_style hybrid or hybrid/overlay is being used, then the pstyle will be a sub-style
name. You must specify I,J arguments that correspond to type pair values defined (via the pair_coeff
command) for that sub-style.

The v_name argument for keyword pair is the name of an equal-style variable which will be evaluated each
time this fix is invoked to set the parameter to a new value. It should be specified as v_name, where name is
the variable name. Equal-style variables can specify formulas with various mathematical functions, and
include thermo_style command keywords for the simulation box parameters and timestep and elapsed time.
Thus it is easy to specify parameters that change as a function of time or span consecutive runs in a
continuous fashion. For the latter, see the start and stop keywords of the run command and the elaplong
keyword of thermo_style custom for details.

For example, these commands would change the prefactor coefficient of the pair_style soft potential from
10.0 to 30.0 in a linear fashion over the course of a simulation:

variable prefactor equal ramp(10,30)
fix 1 all adapt 1 pair soft a * * v_prefactor

fix adapt command 144

LIGGGHTS(R)-PUBLIC Users Manual

The atom keyword enables various atom properties to be changed. The aparam argument is the name of the
parameter to change. This is the current list of atom parameters that can be varied by this fix:

¢ charge = charge on particle
¢ diameter = diameter of particle

The v_name argument of the atom keyword is the name of an gqual-style variable which will be evaluated
each time this fix is invoked to set the parameter to a new value. It should be specified as v_name, where
name is the variable name. See the discussion above describing the formulas associated with equal-style
variables. The new value is assigned to the corresponding attribute for all atoms in the fix group.

If the atom parameter is diameter and per-atom density and per-atom mass are defined for particles (e.g.
atom_style granular), then the mass of each particle is also changed when the diameter changes (density is
assumed to stay constant).

For example, these commands would shrink the diameter of all granular particles in the "center" group from
1.0 to 0.1 in a linear fashion over the course of a 1000-step simulation:

variable size equal ramp(1.0,0.1)
fix 1 center adapt 10 atom diameter v_size

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions: none

Related commands:
compute ti

Default:

The option defaults are scale = no, reset = no.

fix adapt command 145

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix addforce command

Syntax:
fix ID group-ID addforce fx fy fz keyword value ...

¢ ID, group-ID are documented in fix command
¢ addforce = style name of this fix command
¢ fx fy,fz = force component values (force units)

any of fx,fy,fz can be a variable (see below)
¢ zero or more keyword/value pairs may be appended to args
¢ keyword = region or energy

region value = region-ID
region-ID = ID of region atoms must be in to have added force
energy value = v_name
v_name = variable with name that calculates the potential energy of each atom in the a

Examples:

fix kick flow addforce
fix kick flow addforce
fix ff boundary addforce

1.0 0.0 0.0
1.0 0.0 v_oscillate
0.0 0.0 v_push energy v_espace

Description:

Add fx,fy,fz to the corresponding component of force for each atom in the group. This command can be used
to give an additional push to atoms in a simulation, such as for a simulation of Poiseuille flow in a channel.

Any of the 3 quantities defining the force components can be specified as an equal-style or atom-style
variable, namely fx, fv, fz. If the value is a variable, it should be specified as v_name, where name is the
variable name. In this case, the variable will be evaluated each timestep, and its value(s) used to determine the
force component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent force field.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent force field with optional
time-dependence as well.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Adding a force to atoms implies a change in their potential energy as they move due to the applied force field.
For dynamics via the "run" command, this energy can be optionally added to the system's potential energy for
thermodynamic output (see below). For energy minimization via the "minimize" command, this energy must
be added to the system's potential energy to formulate a self-consistent minimization problem (see below).

The energy keyword is not allowed if the added force is a constant vector F = (fx,fy,fz), with all components
defined as numeric constants and not as variables. This is because LIGGGHTS(R)-PUBLIC can compute the

fix addforce command 146

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

energy for each atom directly as E = -x dot F = -(x*fx + y*fy + z*{z), so that -Grad(E) = F.

The energy keyword is optional if the added force is defined with one or more variables, and if you are
performing dynamics via the run command. If the keyword is not used, LIGGGHTS(R)-PUBLIC will set the
energy to 0.0, which is typically fine for dynamics.

The energy keyword is required if the added force is defined with one or more variables, and you are
performing energy minimization via the "minimize" command. The keyword specifies the name of an
atom-style variable which is used to compute the energy of each atom as function of its position. Like
variables used for fx, fy, fz, the energy variable is specified as v_name, where name is the variable name.

Note that when the energy keyword is used during an energy minimization, you must insure that the formula
defined for the atom-style variable is consistent with the force variable formulas, i.e. that -Grad(E) = F. For
example, if the force were a spring-like F = kx, then the energy formula should be E = -0.5kx”2. If you don't
do this correctly, the minimization will not converge properly.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
force to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is
needed so that the minimize command can include the forces added by this fix in a consistent manner. L.e.
there is a decrease in potential energy when atoms move in the direction of the added force.

This fix computes a global scalar and a global 3-vector of forces, which can be accessed by various output
commands. The scalar is the potential energy discussed above. The vector is the total force on the group of
atoms before the forces on individual atoms are changed by the fix. The scalar and vector values calculated by
this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the
fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix_setforce, fix aveforce

Default: none

fix addforce command 147

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix ave/atom command

Syntax:
fix ID group-ID ave/atom Nevery Nrepeat Nfreqg valuel value2

¢ ID, group-ID are documented in fix command

® ave/atom = style name of this fix command

¢ Nevery = use input values every this many timesteps

e Nrepeat = # of times to use input values for calculating averages

¢ Nfreq = calculate averages every this many timesteps one or more input values can be listed
e value = X, y, z, VX, Vy, vz, fx, fy, fz, c_ID, c_ID[i], f_ID, f_ID[i], v_name

X,v,2,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
c_ID = per-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID

f_ID = per-atom vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name

Examples:

fix 1 all ave/atom 1 100 100 vx vy vz
fix 1 all ave/atom 10 20 1000 c_my_stress[1]

Description:

Use one or more per-atom vectors as inputs every few timesteps, and average them atom by atom over longer
timescales. The resulting per-atom averages can be used by other output commands such as the fix ave/spatial
or dump custom commands.

The group specified with the command means only atoms within the group have their averages computed.
Results are set to 0.0 for atoms not in the group.

Each input value can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an atom-style variable. In the latter cases, the compute, fix, or variable
must produce a per-atom vector, not a global quantity or local quantity. If you wish to time-average global
quantities from a compute, fix, or variable, then see the fix ave/time command.

Computes that produce per-atom vectors or arrays are those which have the word atom in their style name.
See the doc pages for individual fixes to determine which ones produce per-atom vectors or arrays. Variables
of style atom are the only ones that can be used with this fix since they produce per-atom vectors.

Each per-atom value of each input vector is averaged independently.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a multiple of
Nfreq. The average is over Nrepeat quantities, computed in the preceding portion of the simulation every
Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also,
the timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be
used to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on

fix ave/atom command 148

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

timestep 200, etc.

The atom attribute values (X,y,z,vx,vy,vzfx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

IMPORTANT NOTE: The x,y,z attributes are values that are re-wrapped inside the periodic box whenever an
atom crosses a periodic boundary. Thus if you time average an atom that spends half its time on either side of
the periodic box, you will get a value in the middle of the box. If this is not what you want, consider averaging
unwrapped coordinates, which can be provided by the compute property/atom command via its xu,yu,zu
attributes.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
no bracketed term is appended, the per-atom vector calculated by the compute is used. If a bracketed term
containing an index I is appended, the Ith column of the per-atom array calculated by the compute is used.
Users can also write code for their own compute styles and add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the per-atom vector calculated by the fix is used. If a bracketed term containing
an index I is appended, the Ith column of the per-atom array calculated by the fix is used. Note that some fixes
only produce their values on certain timesteps, which must be compatible with Nevery, else an error will
result. Users can also write code for their own fix styles and add them to I IGGGHTS(R)-PUBLIC.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script
as an atom-style variable Variables of style atom can reference thermodynamic keywords, or invoke other
computes, fixes, or variables when they are evaluated, so this is a very general means of generating per-atom
quantities to time average.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global scalar or vector quantities are stored by this fix for access by various output commands.

This fix produces a per-atom vector or array which can be accessed by various output commands. A vector is
produced if only a single quantity is averaged by this fix. If two or more quantities are averaged, then an array
of values is produced. The per-atom values can only be accessed on timesteps that are multiples of Nfreq since

that is when averaging is performed.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:
compute, fix ave/histo, fix ave/spatial, fix ave/time, variable,

Default: none

fix ave/atom command 149

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands
fix ave/correlate command
Syntax:
fix ID group-ID ave/correlate Nevery Nrepeat Nfreq valuel value2 ... keyword args

¢ ID, group-ID are documented in fix command

e ave/correlate = style name of this fix command

¢ Nevery = use input values every this many timesteps

¢ Nrepeat = # of correlation time windows to accumulate

¢ Nfreq = calculate tine window averages every this many timesteps
¢ one or more input values can be listed

e value = c_ID, c_ID[N], f_ID, f ID[N], v_name

c_ID = global scalar calculated by a compute with ID

c_ID[I] = Ith component of global vector calculated by a compute with ID
f_ID = global scalar calculated by a fix with ID

f_ID[I] = Ith component of global vector calculated by a fix with ID
v_name = global value calculated by an equal-style variable with name

e zero or more keyword/arg pairs may be appended
¢ keyword = type or ave or start or prefactor or file or overwrite or titlel or title2 or title3

type arg = auto or upper or lower or auto/upper or auto/lower or full

auto = correlate each value with itself
upper = correlate each value with each succeeding value
lower = correlate each value with each preceding value

auto/upper = auto + upper
auto/lower = auto + lower

full = correlate each value with every other value, including itself = auto + upper +
ave args = one or running
one = zero the correlation accumulation every Nfreq steps

running = accumulate correlations continuously
start args = Nstart

Nstart = start accumulating correlations on this timestep
prefactor args = value

value = prefactor to scale all the correlation data by
file arg = filename

filename = name of file to output correlation data to
overwrite arg = none = overwrite output file with only latest output
titlel arg = string

string = text to print as 1lst line of output file
title2 arg = string

string = text to print as 2nd line of output file
title3 arg = string

string = text to print as 3rd line of output file

Examples:

fix 1 all ave/correlate 5 100 1000 c_myTemp file temp.correlate
fix 1 all ave/correlate 1 50 10000 &
c_thermo_press[l] c_thermo_press([2] c_thermo_press[3] &
type upper ave running titlel "My correlation data"

Description:

Use one or more global scalar values as inputs every few timesteps, calculate time correlations bewteen them
at varying time intervals, and average the correlation data over longer timescales. The resulting correlation

fix ave/correlate command 150

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

values can be time integrated by variables or used by other output commands such as thermo_style custom,
and can also be written to a file.

The group specified with this command is ignored. However, note that specified values may represent
calculations performed by computes and fixes which store their own "group” definitions.

Each listed value can be the result of a compute or fix or the evaluation of an equal-style variable. In each
case, the compute, fix, or variable must produce a global quantity, not a per-atom or local quantity. If you
wish to spatial- or time-average or histogram per-atom quantities from a compute, fix, or variable, then see the
fix ave/spatial, fix ave/atom, or fix ave/histo commands. If you wish to sum a per-atom quantity into a single
global quantity, see the compute reduce command.

Computes that produce global quantities are those which do not have the word atom in their style name. Only
a few fixes produce global quantities. See the doc pages for individual fixes for info on which ones produce
such values. Variables of style equal are the only ones that can be used with this fix. Variables of style atom
cannot be used, since they produce per-atom values.

The input values must either be all scalars. What kinds of correlations between input values are calculated is
determined by the fype keyword as discussed below.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used to
calculate correlation data. The input values are sampled every Nevery timesteps. The correlation data for the
preceding samples is computed on timesteps that are a multiple of Nfreq. Consider a set of samples from some
initial time up to an output timestep. The initial time could be the beginning of the simulation or the last
output time; see the ave keyword for options. For the set of samples, the correlation value Cij is calculated as:

Cij(delta) = ave(Vi(t)*Vj(t+delta))

which is the correlation value between input values Vi and Vj, separated by time delta. Note that the second
value Vj in the pair is always the one sampled at the later time. The ave() represents an average over every
pair of samples in the set that are separated by time delta. The maximum delta used is of size
(Nrepeat-1)*Nevery. Thus the correlation between a pair of input values yields Nrepeat correlation datums:

Cij(0), Cij(Nevery), Cij(2*Nevery), ..., Cij((Nrepeat-1)*Nevery)

For example, if Nevery=5, Nrepeat=6, and Nfreq=100, then values on timesteps 0,5,10,15,...,100 will be used
to compute the final averages on timestep 100. Six averages will be computed: Cij(0), Cij(5), Cij(10), Cij(15),
Cij(20), and Cij(25). Cij(10) on timestep 100 will be the average of 19 samples, namely Vi(0)*Vj(10),
Vi(5)*Vj(15), Vi(10)*V j20), Vi(15)*Vj(25), ..., Vi(85)*Vj(95), Vi(90)*Vj(100).

Nfreq must be a multiple of Nevery; Nevery and Nrepeat must be non-zero. Also, if the ave keyword is set to
one which is the default, then Nfreq >= (Nrepeat-1)*Nevery is required.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
no bracketed term is appended, the global scalar calculated by the compute is used. If a bracketed term is
appended, the Ith element of the global vector calculated by the compute is used.

Note that there is a compute reduce command which can sum per-atom quantities into a global scalar or vector
which can thus be accessed by fix ave/correlate. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these
commands which give the IDs of these computes. Users can also write code for their own compute styles and

add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed term is appended, the

fix ave/correlate command 151

LIGGGHTS(R)-PUBLIC Users Manual

Ith element of the global vector calculated by the fix is used.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery,
else an error will result. Users can also write code for their own fix styles and add them to

LIGGGHTS(R)-PUBLIC.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. Only equal-style variables can be referenced. See the variable command for details. Note that variables
of style equal define a formula which can reference individual atom properties or thermodynamic keywords,
or they can invoke other computes, fixes, or variables when they are evaluated, so this is a very general means

of specifying quantities to time correlate.

Additional optional keywords also affect the operation of this fix.

The type keyword determines which pairs of input values are correlated with each other. For N input values
Vi, fori=1 to N, let the number of pairs = Npair. Note that the second value in the pair Vi(t)*V](t+delta) is
always the one sampled at the later time.

o If type is set to auto then each input value is correlated with itself. I.e. Cii = Vi*Vi, fori=1to N, so
Npair = N.

o If fype is set to upper then each input value is correlated with every succeeding value. L.e. Cij =
Vi*Vj, for i < j, so Npair = N*(N-1)/2.

o If rype is set to lower then each input value is correlated with every preceeding value. L.e. Cij = Vi*Vj,
fori>j, so Npair = N*(N-1)/2.

o If type is set to auto/upper then each input value is correlated with itself and every succeeding value.
Le. Cij = Vi*Vj, for i >=j, so Npair = N*(N+1)/2.

o If rype is set to auto/lower then each input value is correlated with itself and every preceding value.
Le. Cij = Vi*Vj, for i <=j, so Npair = N*(N+1)/2.

o If fype is set to full then each input value is correlated with itself and every other value. L.e. Cij =
Vi*Vj, for i,j = 1,N so Npair = N/2.

The ave keyword determines what happens to the accumulation of correlation samples every Nfreq timesteps.
If the ave setting is one, then the accumulation is restarted or zeroed every Nfreq timesteps. Thus the outputs
on successive Nfreq timesteps are essentially independent of each other. The exception is that the Cij(0) =
Vi(T)*Vj(T) value at a timestep T, where T is a multiple of Nfreq, contributes to the correlation output both at
time T and at time T+Nfreq.

If the ave setting is running, then the accumulation is never zeroed. Thus the output of correlation data at any
timestep is the average over samples accumulated every Nevery steps since the fix was defined. it can only be
restarted by deleting the fix via the unfix command, or by re-defining the fix by re-specifying it.

The start keyword specifies what timestep the accumulation of correlation samples will begin on. The default
is step 0. Setting it to a larger value can avoid adding non-equilibrated data to the correlation averages.

The prefactor keyword specifies a constant which will be used as a multiplier on the correlation data after it is
averaged. It is effectively a scale factor on Vi*Vj, which can be used to account for the size of the time
window or other unit conversions.

The file keyword allows a filename to be specified. Every Nfreq steps, an array of correlation data is written to
the file. The number of rows is Nrepeat, as described above. The number of columns is the Npair+2, also as

described above. Thus the file ends up to be a series of these array sections.

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

fix ave/correlate command 152

LIGGGHTS(R)-PUBLIC Users Manual

The title] and title2 and title3 keywords allow specification of the strings that will be printed as the first 3
lines of the output file, assuming the file keyword was used. LIGGGHTS(R)-PUBLIC uses default values for
each of these, so they do not need to be specified.

By default, these header lines are as follows:

Time-correlated data for fix ID
TimeStep Number-of-time-windows
Index TimeDelta Ncount valuel*valued valuel*valued ...

In the first line, ID is replaced with the fix-ID. The second line describes the two values that are printed at the
first of each section of output. In the third line the value pairs are replaced with the appropriate fields from the
fix ave/correlate command.

Let Sij = a set of time correlation data for input values I and J, namely the Nrepeat values:
Sij = Cij(0), Cij(Nevery), Cij(2*Nevery), ..., Cij(*Nrepeat-1)*Nevery)

As explained below, these datums are output as one column of a global array, which is effectively the
correlation matrix.

The trap function defined for equal-style variables can be used to perform a time integration of this vector of
datums, using a trapezoidal rule. This is useful for calculating various quantities which can be derived from
time correlation data. If a normalization factor is needed for the time integration, it can be included in the
variable formula or via the prefactor keyword.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global array of values which can be accessed by various output commands. The values
can only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed. The
global array has # of rows = Nrepeat and # of columns = Npair+2. The first column has the time delta (in
timesteps) between the pairs of input values used to calculate the correlation, as described above. The 2nd
column has the number of samples contributing to the correlation average, as described above. The remaining
Npair columns are for LJ pairs of the N input values, as determined by the type keyword, as described above.

e For type = auto, the Npair = N columns are ordered: C11, C22, ..., CNN.

¢ For type = upper, the Npair = N*(N-1)/2 columns are ordered: C12, C13, ..., CIN, C23, ..., C2N, C34,
..., CN-1IN.

e For type = lower, the Npair = N*(N-1)/2 columns are ordered: C21, C31, C32, C41, C42, C43, ...,
CN1, CN2, ..., CNN-1.

e For type = auto/upper, the Npair = N*(N+1)/2 columns are ordered: C11, C12, C13, ..., CIN, C22,
C23, ..., C2N, C33, C34, ..., CN-1N, CNN.

e For type = auto/lower, the Npair = N*(N+1)/2 columns are ordered: C11, C21, C22, C31, C32, C33,
C41, ..., C44,CN1, CN2, ..., CNN-1, CNN.

e For type = full, the Npair = N2 columns are ordered: C11, C12, ..., CIN, C21, C22, ..., C2N, C31, ...,
C3N, ..., CNI1, ..., CNN-1, CNN.

The array values calculated by this fix are treated as "intensive". If you need to divide them by the number of
atoms, you must do this in a later processing step, e.g. when using them in a variable.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

fix ave/correlate command 153

LIGGGHTS(R)-PUBLIC Users Manual

Restrictions: none
Related commands:

compute, fix ave/time, fix ave/atom, fix ave/spatial, fix ave/histo, variable

Default: none

The option defaults are ave = one, type = auto, start = 0, no file output, title 1,2,3 = strings as described above,
and prefactor = 1.0.

fix ave/correlate command 154

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix ave/euler command

Syntax:

fix ID group-ID ave/euler nevery N cell_size_relative c parallel par keywords values

¢ ID, group-ID are documented in fix command

e ave/euler = style name of this fix command

¢ nevery = obligatory keyword

¢ n = calculate average values every this many timesteps
e cell_size_relative = obligatory keyword

e ¢ = cell size in multiples of max cutoff

¢ parallel = obligatory keyword

® par = "yes" or "no

® zero or more keyword/value pairs may be appended

¢ keyword = basevolume_region

basevolume_region values = reg-ID
region-ID = correct grid cell volume based on this region

Examples:

fix 1 all ave/euler nevery 100 cell_size_relative 4.5
Description:

Calculate cell-based averages of velocity, radius, volume fraction, and pressure (-1/3 * trace of the stress
tensor) every few timesteps, as specified by the nevery keyword. The size of the cells is calculated as multiple
of the maximum cutoff, via the cell_size_relative. Note that at least a relative cell size of 3 is required.

Note that velocity is favre (mass) averaged, whereas radius is arithmetically averaged. To calculate the stress,
this command internally uses a compute stress/atom . It includes the convective term correctly for granular
particles with non-zero average velocity (which is not included in compute stress/atom). However, it does not
include bond, angle, diahedral or kspace contributions so that the stress tensor finally reads

N,

r l &
‘SEI’? - - ”.‘i'rlrt'lﬂ - t'lf'“'l"r'1ﬂ}(t'|f? - I'I("T-t'l"r'1f?} + a Z(rln Flfj + FIEn FEFJ}

“ n=1

where vave is the (cell-based) average velocity. The first term is a kinetic energy contribution for atom /. The
second term is a pairwise energy contribution where n loops over the Np neighbors of atom /, r/ and r2 are the
positions of the 2 atoms in the pairwise interaction, and F/ and F2 are the forces on the 2 atoms resulting from
the pairwise interaction.

The parallel option determines if every process allocates its own local grid for postprocessing (for parallel =
yes), or each proc contributes to one single global grid (for parallel = no). This will be slower since it requires
parallel communication, but will ensure that the grid cells do not move over time (e.g. in case of a moving
boundary)

The basevolume_region option allows to specify a region that represents the volume which can theoretically
be filled with particles. This will then be used to correct the basis of the averaging volume for each cell in the

fix ave/euler command 155

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

grid. For example, if you use a cylindrical wall, it makes sense to use an identical cylindrical region for the
basevolume_region option, and the command will correctly calculate the volume fraction in the near-wall
cells. the calculation of overlap between grid cells and the region is done using a Monte-Carlo approach.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix modify options are relevant to
this fix.

This fix computes the above-mentioned quantities for output via a dump euler/vtk command. The values can
only be accessed on timesteps that are multiples of nevery since that is when calculations are performed.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

Volume fractions and stresses are calculated based on the assumption of a structured (equidistant regular)
grid, so volume fractions and stresses near walls that are not alligned with the grid will be incorrect.

Related commands:
compute, compute stress/atom, fix ave/atom, fix ave/histo, fix ave/time, fix ave/spatial,

Default: none

fix ave/euler command 156

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix aveforce command

Syntax:
fix ID group-ID aveforce fx fy fz keyword value ...

¢ ID, group-ID are documented in fix command
¢ aveforce = style name of this fix command
¢ fx fy,fz = force component values (force units)

any of fx,fy,fz can be a variable (see below)
¢ zero or more keyword/value pairs may be appended to args
¢ keyword = region

region value = region-ID
region-ID = ID of region atoms must be in to have added force

Examples:

fix pressdown topwall aveforce 0.0 -1.0 0.0
fix 2 bottomwall aveforce NULL -1.0 0.0 region top
fix 2 bottomwall aveforce NULL -1.0 v_oscillate region top

Description:

Apply an additional external force to a group of atoms in such a way that every atom experiences the same
force. This is useful for pushing on wall or boundary atoms so that the structure of the wall does not change
over time.

The existing force is averaged for the group of atoms, component by component. The actual force on each
atom is then set to the average value plus the component specified in this command. This means each atom in
the group receives the same force.

Any of the fx,fy,fz values can be specified as NULL which means the force in that dimension is not changed.
Note that this is not the same as specifying a 0.0 value, since that sets all forces to the same average value
without adding in any additional force.

Any of the 3 quantities defining the force components can be specified as an equal-style variable, namely fx,
. fz. If the value is a variable, it should be specified as v_name, where name is the variable name. In this
case, the variable will be evaluated each timestep, and its value used to determine the average force.

Equal-style variables can specify formulas with various mathematical functions, and include thermo _style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent average force.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

fix aveforce command 157

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms before the forces on individual atoms are changed by the fix. The vector
values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

Restrictions: none

Related commands:

fix_setforce, fix addforce

Default: none

fix aveforce command 158

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix ave/histo command

Syntax:

fix ID group-ID ave/histo Nevery Nrepeat Nfreqg lo hi Nbin valuel value?2

¢ ID, group-ID are documented in fix command

e ave/histo = style name of this fix command

¢ Nevery = use input values every this many timesteps
e Nrepeat = # of times to use input values for calculating histogram
¢ Nfreq = calculate histogram every this many timesteps
¢]o,hi = lo/hi bounds within which to histogram

¢ Nbin = # of histogram bins

® one or more inp

ut values can be listed

e value = X, y, 7, VX, Vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f ID[N], v_name

velocity,

X,v,2,vx,vy,vz,fx,fy,fz = atom attribute (position,
c_ID = scalar or vector calculated by a compute with ID
c_ID[I] = Ith component

f_ID = scalar or vector calculated by a fix with ID
f_ID[I] = Ith component

v_name = value(s)

e zero or more keyword/arg pairs may be appended
¢ keyword = mode or file or ave or start or beyond or overwrite or titlel or title2 or title3

mode arg =
scalar =
vector =
file arg =
filename

ave args =
one =
running =

window M =

start args
Nstart =
beyond arg
ignore =
end =
extra = ¢
overwrite a
titlel arg
string =
title2 arg
string =
title3 arg
string =

Examples:

fix 1 all
fix 1 all
fix 1 all

ave/histo
ave/histo
ave/histo

Description:

scalar or vector

all input values are scalars

all input values are vectors
filename

= name of file to output histogram(s)
one or running or window

to

output a new average value every Nfreqg steps

output cumulative average of all previous Nfreqg steps

= Nstart
start averaging on this timestep
= ignore or end or extra

output average of M most recent Nfreqg steps

ignore values outside histogram lo/hi bounds

reate 2 extra bins for value

count values outside histogram lo/hi bounds in end bins
outside histogram lo/hi bounds
file with only latest output

rg = none = overwrite output

= string

text to print as 1lst line of output file
= string

text to print as 2nd line of output file
= string

text to print as 3rd line of output file,

keyword args

only for vector mode

100 5 1000 0.5 1.5 50 c_myTemp file temp.histo ave running

100 5 1000 =5 5 100 c_thermo_press|[2]

c_thermo_press|[3]

titlel

force component)
of vector or Ith column of array calculated by a compute with ID

of vector or Ith column of array calculated by a fix with ID
calculated by an equal-style or atom-style variable with name

"My output val

1 100 1000 -2.0 2.0 18 vx vy vz mode vector ave running beyond extra

fix ave/histo command

159

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Use one or more values as inputs every few timesteps, histogram them, and average the histogram over longer
timescales. The resulting histogram can be used by other output commands, and can also be written to a file.

The group specified with this command is ignored for global and local input values. For per-atom input
values, only atoms in the group contribute to the histogram. Note that regardless of the specified group,
specified values may represent calculations performed by computes and fixes which store their own "group”
definition.

A histogram is simply a count of the number of values that fall within a histogram bin. Nbins are defined, with
even spacing between /o and hi. Values that fall outside the lo/hi bounds can be treated in different ways; see
the discussion of the beyond keyword below.

Each input value can be an atom attribute (position, velocity, force component) or can be the result of a
compute or fix or the evaluation of an equal-style or atom-style variable. The set of input values can be either
all global, all per-atom, or all local quantities. Inputs of different kinds (e.g. global and per-atom) cannot be
mixed. Atom attributes are per-atom vector values. See the doc page for individual "compute" and "fix"
commands to see what kinds of quantities they generate.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword.

If mode = vector, then the input values may either be vectors or arrays. If a global array is listed, then it is the
same as if the individual columns of the array had been listed one by one. E.g. these 2 fix ave/histo commands
are equivalent, since the compute com/molecule command creates a global array with 3 columns:

compute myCOM all com/molecule
fix 1 all ave/histo 100 1 100 c_myCOM file tmpl.com mode vector
fix 2 all ave/histo 100 1 100 c_myCOM[1l] c_myCOM[2] c_myCOM[3] file tmp2.com mode vector

The output of this command is a single histogram for all input values combined together, not one histogram
per input value. See below for details on the format of the output of this fix.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the histogram. The final histogram is generated on timesteps that are multiple of Nfreq. It is
averaged over Nrepeat histograms, computed in the preceding portion of the simulation every Nevery
timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also, the
timesteps contributing to the histogram cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then input values on timesteps 90,92,94,96,98,100 will
be used to compute the final histogram on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging of the histogram is done; a histogram
is simply generated on timesteps 100,200,etc.

The atom attribute values (x,y,z,vx,vy,vzfx,fy,fz) are self-explanatory. Note that other atom attributes can be
used as inputs to this fix by using the compute property/atom command and then specifying an input value
from that compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global or per-atom or local vector calculated by the compute
is used. Or if the compute calculates an array, all of the columns of the array are used as if they had been
specified as individual vectors (see description above). If a bracketed term is appended, the Ith column of the
global or per-atom or local array calculated by the compute is used.

fix ave/histo command 160

LIGGGHTS(R)-PUBLIC Users Manual

Note that there is a compute reduce command which can sum per-atom quantities into a global scalar or vector
which can thus be accessed by fix ave/histo. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these
commands which give the IDs of these computes. Users can also write code for their own compute styles and

add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode
= scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed
term is appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no
bracketed term is appended, the global or per-atom or local vector calculated by the fix is used. Or if the fix
calculates an array, all of the columns of the array are used as if they had been specified as individual vectors
(see description above). If a bracketed term is appended, the Ith column of the global or per-atom or local
array calculated by the fix is used.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery,
else an error will result. Users can also write code for their own fix styles and add them to

LIGGGHTS(R)-PUBLIC.

"

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. If mode = scalar, then only equal-style variables can be used, which produce a global value. If mode =
vector, then only atom-style variables can be used, which produce a per-atom vector. See the variable
command for details. Note that variables of style equal and atom define a formula which can reference
individual atom properties or thermodynamic keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying quantities to histogram.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global
vectors. If the mode keyword is set to vector, then all input values must be global or per-atom or local vectors,
or columns of global or per-atom or local arrays.

The beyond keyword determines how input values that fall outside the lo to ki bounds are treated. Values such
that lo <= value <= hi are assigned to one bin. Values on a bin boundary are assigned to the lower of the 2
bins. If beyond is set to ignore then values < lo and values > hi are ignored, i.e. they are not binned. If beyond
is set to end then values < lo are counted in the first bin and values > hi are counted in the last bin. If beyond is
set to extend then two extra bins are created, so that there are Nbins+2 total bins. Values < lo are counted in
the first bin and values > hi are counted in the last bin (Nbins+1). Values between lo and Ai (inclusive) are
counted in bins 2 thru Nbins+1. The "coordinate" stored and printed for these two extra bins is /o and hi.

The ave keyword determines how the histogram produced every Nfreq steps are averaged with histograms
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command
or written to a file.

If the ave setting is one, then the histograms produced on timesteps that are multiples of Nfreq are
independent of each other; they are output as-is without further averaging.

If the ave setting is running, then the histograms produced on timesteps that are multiples of Nfreq are
summed and averaged in a cumulative sense before being output. Each bin value in the histogram is thus the
average of the bin value produced on that timestep with all preceding values for the same bin. This running
average begins when the fix is defined; it can only be restarted by deleting the fix via the unfix command, or
by re-defining the fix by re-specifying it.

If the ave setting is window, then the histograms produced on timesteps that are multiples of Nfreq are
summed within a moving "window" of time, so that the last M histograms are used to produce the output. E.g.

fix ave/histo command 161

LIGGGHTS(R)-PUBLIC Users Manual

if M = 3 and Nfreq = 1000, then the output on step 10000 will be the combined histogram of the individual
histograms on steps 8000,9000,10000. Outputs on early steps will be sums over less than M histograms if they
are not available.

The start keyword specifies what timestep histogramming will begin on. The default is step 0. Often input
values can be 0.0 at time 0O, so setting start to a larger value can avoid including a 0.0 in a running or
windowed histogram.

The file keyword allows a filename to be specified. Every Nfreq steps, one histogram is written to the file.
This includes a leading line that contains the timestep, number of bins, the total count of values contributing
to the histogram, the count of values that were not histogrammed (see the beyond keyword), the minimum
value encountered, and the maximum value encountered. The min/max values include values that were not
histogrammed. Following the leading line, one line per bin is written into the file. Each line contains the bin #,
the coordinate for the center of the bin (between lo and ki), the count of values in the bin, and the normalized
count. The normalized count is the bin count divided by the total count (not including values not
histogrammed), so that the normalized values sum to 1.0 across all bins.

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title] and title2 and title3 keywords allow specification of the strings that will be printed as the first 3
lines of the output file, assuming the file keyword was used. LIGGGHTS(R)-PUBLIC uses default values for
each of these, so they do not need to be specified.

By default, these header lines are as follows:

Histogram for fix ID
TimeStep Number-of-bins Total-counts Missing-counts Min-value Max-value
Bin Coord Count Count/Total

In the first line, ID is replaced with the fix-ID. The second line describes the six values that are printed at the
first of each section of output. The third describes the 4 values printed for each bin in the histogram.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix produces a global vector and global array which can be accessed by various output commands. The
values can only be accessed on timesteps that are multiples of Nfreq since that is when a histogram is
generated. The global vector has 4 values:

¢ | = total counts in the histogram

¢ 2 = values that were not histogrammed (see beyond keyword)

¢ 3 = min value of all input values, including ones not histogrammed
¢ 4 = max value of all input values, including ones not histogrammed

The global array has # of rows = Nbins and # of columns = 3. The first column has the bin coordinate, the 2nd
column has the count of values in that histogram bin, and the 3rd column has the bin count divided by the
total count (not including missing counts), so that the values in the 3rd column sum to 1.0.

The vector and array values calculated by this fix are all treated as "intensive". If this is not the case, e.g. due

to histogramming per-atom input values, then you will need to account for that when interpreting the values
produced by this fix.

fix ave/histo command 162

LIGGGHTS(R)-PUBLIC Users Manual

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:

compute, fix ave/atom, fix ave/spatial, fix ave/time, variable, fix ave/correlate,

Default: none

The option defaults are mode = scalar, ave = one, start = 0, no file output, beyond = ignore, and title 1,2,3 =
strings as described above.

fix ave/histo command 163

LIGGGHTS(R)-PUBLI

C Users Manual

LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBILIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix ave/spatial command

Syntax:

fix ID group-ID ave/spatial Nevery Nrepeat Nfreq dim origin delta

¢ ID, group-ID are documented in fix command
e ave/spatial = style name of this fix command
¢ Nevery = use input values every this many timesteps

e Nrepeat = # of times to use input values for calculating averages

¢ Nfreq = calculate averages every this many timesteps

¢ dim, origin, delta can be repeated 1, 2, or 3 times for 1d, 2d, or 3d bins

valuel value2

ordinate value (distance units)

dim = x or y or z
origin = lower or center or upper Or Cco
delta = thickness of spatial bins in dim (distance units)

¢ one or more input values can be listed

e value = vx, vy, vz, fx, fy, fz, density/mass, density/number, c_ID, c_ID[I], f_ID, f_ID[I], v_name

vx,vy,vz, fx,fy,fz = atom attribute (vel
density/number, density/mass = number o
c_ID = per—-atom vector calculated by a

c_ID[I] = Ith column of per—-atom array
f_ID = per—-atom vector calculated by a
f_ID[I] = Ith column of per—-atom array
v_name = per—-atom vector calculated by

e zero or more keyword/arg pairs may be appended

e keyword = norm or units or file or ave or overwrite or titlel or title2 or title3 or write_ts or std

units arg =

box or lattice or reduced
all or sample
region-ID

norm arg =
region arg =
region-ID =

ocity, force component)

r mass density

compute with ID

calculated by a compute with ID
fix with ID

calculated by a fix with ID

an atom-style variable with name

ID of region atoms must be in to contribute to spatial averaging

f all previous Nfreqg steps
ecent Nfreqg steps
file with only latest output
output file
output file

output file

write time-step info and number of samples to file

ave args = one or running or window M
one = output new average value every Nfreqg steps
running = output cumulative average o
window M = output average of M most r
file arg = filename
filename = file to write results to
overwrite arg = none = overwrite output
titlel arg = string

string = text to print as 1lst line of
title2 arg = string

string = text to print as 2nd line of
title3 arg = string

string = text to print as 3rd line of
write_ts arg = yes Or no

yes or no = do nor do not
std arg = N1 N2 filename

N1 = lower limit of particle numb
N2 = upper limit of particle numb
filename = file to write results

Examples:

er per bin for sampling
er per bin for sampling
into

fix 1 all ave/spatial 10000 1 10000 z lower 0.02 c_myCentro units reduced &

titlel "My output values"

fix 1 flow ave/spatial 100 10 1000 y 0.0 1.0 vx vz norm sample file vel.profile

fix ave/spatial command

keyword a

164

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

fix 1 flow ave/spatial 100 5 1000 z lower 1.0 y 0.0 2.5 density/mass ave running
fix 1 all ave/spatial 1000 1 1000 x 0 1le-3 y 0 1le-3 z 0 le-3 f_tracer[0] file bin_data.dat std 12

Description:

Use one or more per-atom vectors as inputs every few timesteps, bin their values spatially into 1d, 2d, or 3d
bins based on current atom coordinates, and average the bin values over longer timescales. The resulting bin
averages can be used by other output commands such as thermo_style custom, and can also be written to a
file.

The group specified with the command means only atoms within the group contribute to bin averages. If the
region keyword is used, the atom must be in both the group and the specified geometric region in order to
contribute to bin averages.

Each listed value can be an atom attribute (position, velocity, force component), a mass or number density, or
the result of a compute or fix or the evaluation of an atom-style variable. In the latter cases, the compute, fix,
or variable must produce a per-atom quantity, not a global quantity. If you wish to time-average global
quantities from a compute, fix, or variable, then see the fix ave/time command.

Computes that produce per-atom quantities are those which have the word atom in their style name. See the
doc pages for individual fixes to determine which ones produce per-atom quantities. Variables of style atom
are the only ones that can be used with this fix since all other styles of variable produce global quantities.

The per-atom values of each input vector are binned and averaged independently of the per-atom values in
other input vectors.

The size and dimensionality of the bins (1d = layers or slabs, 2d = pencils, 3d = boxes) are determined by the
dim, origin, and delta settings and how many times they are specified (1, 2, or 3). See details below.

IMPORTANT NOTE: This fix works by creating an array of size Nbins by Nvalues on each processor. Nbins
is the total number of bins; Nvalues is the number of input values specified. Each processor loops over its
atoms, tallying its values to the appropriate bin. Then the entire array is summed across all processors. This
means that using a large number of bins (easy to do for 2d or 3d bins) will incur an overhead in memory and
computational cost (summing across processors), so be careful to use reasonable numbers of bins.

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used to bin
them and contribute to the average. The final averaged quantities are generated on timesteps that are a
multiples of Nfreq. The average is over Nrepeat quantities, computed in the preceding portion of the
simulation every Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if
Nrepeat is 1. Also, the timesteps contributing to the average value cannot overlap, i.e. Nfreq >
(Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be
used to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated
on timesteps 100,200,etc.

Each per-atom property is also averaged over atoms in each bin. Bins can be 1d layers or slabs, 2d pencils, or
3d boxes. This depends on how many times (1, 2, or 3) the dim, origin, and delta settings are specified in the
fix ave/spatial command. For 2d or 3d bins, there is no restriction on specifying dim = x before dim =y, or
dim =y before dim = z. Bins in a particular dim have a bin size in that dimension given by delta. Every Nfreq
steps, when averaging is being performed and the per-atom property is calculated for the first time, the
number of bins and the bin sizes and boundaries are computed. Thus if the simulation box changes size during
a simulation, the number of bins and their boundaries may also change. In each dimension, bins are defined
relative to a specified origin, which may be the lower/upper edge of the simulation box (in dim) or its center

fix ave/spatial command 165

LIGGGHTS(R)-PUBLIC Users Manual

point, or a specified coordinate value. Starting at the origin, sufficient bins are created in both directions to
completely cover the box. On subsequent timesteps every atom is mapped to one of the bins. Atoms beyond
the lowermost/uppermost bin in a dimension are counted in the first/last bin in that dimension.

For orthogonal simulation boxes, the bins are also layers, pencils, or boxes aligned with the xyz coordinate
axes. For triclinic (non-orthogonal) simulation boxes, the bins are so that they are parallel to the tilted faces of
the simulation box. See this section of the manual for a discussion of the geometry of triclinic boxes in
LIGGGHTS(R)-PUBLIC. As described there, a tilted simulation box has edge vectors a,b,c. In that
nomenclature, bins in the x dimension have faces with normals in the "b" cross "c¢" direction. Bins in y have
faces normal to the "a" cross "c" direction. And bins in z have faces normal to the "a" cross "b" direction.
Note that in order to define the size and position of these bins in an unambiguous fashion, the units option

must be set to reduced when using a triclinic simulation box, as noted below.

The atom attribute values (vx,vy,vz,fx,fy,z) are self-explanatory. Note that other atom attributes (including
atom postitions X,y,z) can be used as inputs to this fix by using the compute property/atom command and then
specifying an input value from that compute.

The density/number value means the number density is computed in each bin, i.e. a weighting of 1 for each
atom. The density/mass value means the mass density is computed in each bind, i.e. each atom is weighted by
its mass. The resulting density is normalized by the volume of the bin so that units of number/volume or
density are output. See the units command doc page for the definition of density for each choice of units, e.g.
gram/cm”3.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
no bracketed integer is appended, the per-atom vector calculated by the compute is used. If a bracketed integer
is appended, the Ith column of the per-atom array calculated by the compute is used. Users can also write code

for their own compute styles and add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If no
bracketed integer is appended, the per-atom vector calculated by the fix is used. If a bracketed integer is
appended, the Ith column of the per-atom array calculated by the fix is used. Note that some fixes only
produce their values on certain timesteps, which must be compatible with Nevery, else an error results. Users
can also write code for their own fix styles and add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. Variables of style atom can reference thermodynamic keywords and various per-atom attributes, or
invoke other computes, fixes, or variables when they are evaluated, so this is a very general means of
generating per-atom quantities to spatially average.

Additional optional keywords also affect the operation of this fix.

The units keyword determines the meaning of the distance units used for the bin size delta and for origin if it
is a coordinate value. For orthogonal simulation boxes, any of the 3 options may be used. For non-orthogonal
(triclinic) simulation boxes, only the reduced option may be used.

A box value selects standard distance units as defined by the units command, e.g. Angstroms for units = real
or metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. A reduced value means normalized unitless values between 0
and 1, which represent the lower and upper faces of the simulation box respectively. Thus an origin value of
0.5 means the center of the box in any dimension. A delta value of 0.1 means 10 bins span the box in that
dimension.

Consider a non-orthogonal box, with bins that are 1d layers or slabs in the x dimension. No matter how the

n.n

box is tilted, an origin of 0.0 means start layers at the lower "b" cross "c" plane of the simulation box and an

fix ave/spatial command 166

LIGGGHTS(R)-PUBLIC Users Manual

origin of 1.0 means to start layers at the upper "b" cross "c" face of the box. A delta value of 0.1 means there
will be 10 layers from 0.0 to 1.0, regardless of the current size or shape of the simulation box.

The norm keyword affects how averaging is done for the output produced every Nfreq timesteps. For an all
setting, a bin quantity is summed over all atoms in all Nrepeat samples, as is the count of atoms in the bin.
The printed value for the bin is Total-quantity / Total-count. In other words it is an average over the entire
Nfreq timescale.

For a sample setting, the bin quantity is summed over atoms for only a single sample, as is the count, and a
"average sample value" is computed, i.e. Sample-quantity / Sample-count. The printed value for the bin is the
average of the Nrepeat "average sample values", In other words it is an average of an average.

The ave keyword determines how the bin values produced every Nfreq steps are averaged with bin values
produced on previous steps that were multiples of Nfreq, before they are accessed by another output command
or written to a file.

If the ave setting is one, then the bin values produced on timesteps that are multiples of Nfreq are independent
of each other; they are output as-is without further averaging.

If the ave setting is running, then the bin values produced on timesteps that are multiples of Nfreq are summed
and averaged in a cumulative sense before being output. Each output bin value is thus the average of the bin
value produced on that timestep with all preceding values for the same bin. This running average begins when
the fix is defined; it can only be restarted by deleting the fix via the unfix command, or re-defining the fix by
re-specifying it.

If the ave setting is window, then the bin values produced on timesteps that are multiples of Nfreq are summed
and averaged within a moving "window" of time, so that the last M values for the same bin are used to
produce the output. E.g. if M = 3 and Nfreq = 1000, then the output on step 10000 will be the average of the
individual bin values on steps 8000,9000,10000. Outputs on early steps will average over less than M values
if they are not available.

The file keyword allows a filename to be specified. Every Nfreg timesteps, a section of bin info will be written
to a text file in the following format. A line with the timestep and number of bin is written. Output of this line
can be supressed with the write_ts keyword. Then one line per bin is written, containing the bin ID (1-N), the
coordinate of the center of the bin, the number of atoms in the bin, and one or more calculated values. The
number of values in each line corresponds to the number of values specified in the fix ave/spatial command.
The number of atoms and the value(s) are average quantities. If the value of the units keyword is box or
lattice, the "coord" is printed in box units. If the value of the units keyword is reduced, the "coord" is printed
in reduced units (0-1).

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title] and title2 and title3 keywords allow specification of the strings that will be printed as the first 3
lines of the output file, assuming the file keyword was used. LIGGGHTS(R)-PUBLIC uses default values for
each of these, so they do not need to be specified. If either of them is specified as "", then the line is omitted

By default, these header lines are as follows:

Spatial-averaged data for fix ID and group name
Timestep Number-of-bins
Bin Coordl Coord2 Coord3 Count valuel value2 ...

In the first line, ID and name are replaced with the fix-ID and group name. The second line describes the two
values that are printed at the first of each section of output. In the third line the values are replaced with the

fix ave/spatial command 167

LIGGGHTS(R)-PUBLIC Users Manual

appropriate fields from the fix ave/spatial command. The Coord2 and Coord3 entries in the third line only
appear for 2d and 3d bins respectively. For 1d bins, the word Coord]1 is replaced by just Coord.

If the std keyword is set, mean and standard deviation of the specified values (valuel, value2, etc.) over
samples of a defined size are calculated. The sample size has to be defined by a lower limit (N1) and an upper
limit (N2>NT1). All bins containing a particle count between N1 and N2 (including N1 and N2) are used as
samples. Every Nfreq timestep a line is written to a file specified after N1 and N2, including the following
numbers: timestep, total number of atoms, total number of bins, maximum number of atoms per bin, number
of empty bins, number of bins including less atoms than N1, number of bins including more atoms than N2,
number of samples, average number of atoms per sample, followed by three quantities for each defined value:
true average (over all atoms), average over the chosen samples, standard deviation over the chosen samples.
For the calculation of the standard deviation the (known) true average is used instead of the samples average
(the latter is only an estimate for the true average!).

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global array of values which can be accessed by various output commands. The values
can only be accessed on timesteps that are multiples of Nfreq since that is when averaging is performed. The
global array has # of rows = Nbins and # of columns = Ndim+1+Nvalues, where Ndim = 1,2,3 for 1d,2d,3d
bins. The first 1 or 2 or 3 columns have the bin coordinates (center of the bin) in the appropriate dimensions,
the next column has the count of atoms in that bin, and the remaining columns are the Nvalue quantities.
When the array is accessed with an I that exceeds the current number of bins, than a 0.0 is returned by the fix
instead of an error, since the number of bins can vary as a simulation runs, depending on the simulation box
size. 2d or 3d bins are ordered so that the last dimension(s) vary fastest. The array values calculated by this fix
are "intensive", since they are already normalized by the count of atoms in each bin.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

When the ave keyword is set to running or window then the number of bins must remain the same during the
simulation, so that the appropriate averaging can be done. This will be the case if the simulation box size
doesn't change or if the units keyword is set to reduced.

Related commands:

Default:

The option defaults are units = lattice, norm = all, no file output, and ave = one, title 1,2,3 = strings as
described above.

fix ave/spatial command 168

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands
fix ave/time command
Syntax:
fix ID group-ID ave/time Nevery Nrepeat Nfreqg valuel value2 ... keyword args

¢ ID, group-ID are documented in fix command

e ave/time = style name of this fix command

¢ Nevery = use input values every this many timesteps

e Nrepeat = # of times to use input values for calculating averages
¢ Nfreq = calculate averages every this many timesteps

¢ one or more input values can be listed

e value = c_ID, c_ID[N], f_ID, f ID[N], v_name

c_ID = global scalar or vector calculated by a compute with ID

c_ID[I] = Ith component of global vector or Ith column of global array calculated by a c
f_ID = global scalar or vector calculated by a fix with ID

f_ID[I] = Ith component of global vector or Ith column of global array calculated by a f
v_name = global value calculated by an equal-style variable with name

e zero or more keyword/arg pairs may be appended
¢ keyword = mode or file or ave or start or off or overwrite or titlel or title2 or title3

mode arg = scalar or vector
scalar = all input values are global scalars
vector = all input values are global vectors or global arrays
ave args = one or running or window M
one = output a new average value every Nfreqg steps
running = output cummulative average of all previous Nfreqg steps
window M = output average of M most recent Nfreq steps
start args = Nstart
Nstart = start averaging on this timestep
off arg = M = do not average this value
M = value # from 1 to Nvalues
file arg = filename
filename = name of file to output time averages to
overwrite arg = none = overwrite output file with only latest output
titlel arg = string
string = text to print as 1lst line of output file
title2 arg = string
string = text to print as 2nd line of output file
title3 arg = string
string = text to print as 3rd line of output file, only for vector mode

Examples:

fix 1 all ave/time 100 5 1000 c_myTemp c_thermo_temp file temp.profile
fix 1 all ave/time 100 5 1000 c_thermo_press([2] ave window 20 &

titlel "My output values"
fix 1 all ave/time 1 100 1000 f_indent f_indent[l] file temp.indent off 1

Description:
Use one or more global values as inputs every few timesteps, and average them over longer timescales. The
resulting averages can be used by other output commands such as thermo_style custom, and can also be

written to a file. Note that if no time averaging is done, this command can be used as a convenient way to
simply output one or more global values to a file.

fix ave/time command 169

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The group specified with this command is ignored. However, note that specified values may represent
calculations performed by computes and fixes which store their own "group” definitions.

Each listed value can be the result of a compute or fix or the evaluation of an equal-style variable. In each
case, the compute, fix, or variable must produce a global quantity, not a per-atom or local quantity. If you
wish to spatial- or time-average or histogram per-atom quantities from a compute, fix, or variable, then see the
fix ave/spatial, fix ave/atom, or fix ave/histo commands. If you wish to sum a per-atom quantity into a single
global quantity, see the compute reduce command.

Computes that produce global quantities are those which do not have the word atom in their style name. Only
a few fixes produce global quantities. See the doc pages for individual fixes for info on which ones produce
such values. Variables of style equal are the only ones that can be used with this fix. Variables of style atom
cannot be used, since they produce per-atom values.

The input values must either be all scalars or all vectors (or arrays), depending on the setting of the mode
keyword. In both cases, the averaging is performed independently on each input value. I.e. each input scalar is
averaged independently and each element of each input vector (or array) is averaged independently.

If mode = vector, then the input values may either be vectors or arrays and all must be the same "length",
which is the length of the vector or number of rows in the array. If a global array is listed, then it is the same
as if the individual columns of the array had been listed one by one. E.g. these 2 fix ave/time commands are
equivalent, since the compute rdf command creates, in this case, a global array with 3 columns, each of length
50:

compute myRDF all rdf 50 1 2
fix 1 all ave/time 100 1 100 c_myRDF file tmpl.rdf mode vector
fix 2 all ave/time 100 1 100 c_myRDF[1] c_myRDF[2] c_myRDF[3] file tmp2.rdf mode vector

The Nevery, Nrepeat, and Nfreq arguments specify on what timesteps the input values will be used in order to
contribute to the average. The final averaged quantities are generated on timesteps that are a mlutiple of
Nfreq. The average is over Nrepeat quantities, computed in the preceding portion of the simulation every
Nevery timesteps. Nfreq must be a multiple of Nevery and Nevery must be non-zero even if Nrepeat is 1. Also,
the timesteps contributing to the average value cannot overlap, i.e. Nfreq > (Nrepeat-1)*Nevery is required.

For example, if Nevery=2, Nrepeat=6, and Nfreq=100, then values on timesteps 90,92,94,96,98,100 will be
used to compute the final average on timestep 100. Similarly for timesteps 190,192,194,196,198,200 on
timestep 200, etc. If Nrepeat=1 and Nfreq = 100, then no time averaging is done; values are simply generated
on timesteps 100,200,etc.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script. If
mode = scalar, then if no bracketed term is appended, the global scalar calculated by the compute is used. If a
bracketed term is appended, the Ith element of the global vector calculated by the compute is used. If mode =
vector, then if no bracketed term is appended, the global vector calculated by the compute is used. Or if the
compute calculates an array, all of the columns of the global array are used as if they had been specified as
individual vectors (see description above). If a bracketed term is appended, the Ith column of the global array
calculated by the compute is used.

Note that there is a compute reduce command which can sum per-atom quantities into a global scalar or vector
which can thus be accessed by fix ave/time. Or it can be a compute defined not in your input script, but by
thermodynamic output or other fixes such as fix nvt or fix temp/rescale. See the doc pages for these
commands which give the IDs of these computes. Users can also write code for their own compute styles and

add them to LIGGGHTS(R)-PUBLIC.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. If mode
= scalar, then if no bracketed term is appended, the global scalar calculated by the fix is used. If a bracketed

fix ave/time command 170

LIGGGHTS(R)-PUBLIC Users Manual

term is appended, the Ith element of the global vector calculated by the fix is used. If mode = vector, then if no
bracketed term is appended, the global vector calculated by the fix is used. Or if the fix calculates an array, all
of the columns of the global array are used as if they had been specified as individual vectors (see description
above). If a bracketed term is appended, the Ith column of the global array calculated by the fix is used.

Note that some fixes only produce their values on certain timesteps, which must be compatible with Nevery,
else an error will result. Users can also write code for their own fix styles and add them to

LIGGGHTS(R)-PUBLIC.

"

If a value begins with "v_", a variable name must follow which has been previously defined in the input
script. Variables can only be used as input for mode = scalar. Only equal-style variables can be referenced.
See the variable command for details. Note that variables of style equal define a formula which can reference
individual atom properties or thermodynamic keywords, or they can invoke other computes, fixes, or variables
when they are evaluated, so this is a very general means of specifying quantities to time average.

Additional optional keywords also affect the operation of this fix.

If the mode keyword is set to scalar, then all input values must be global scalars, or elements of global
vectors. If the mode keyword is set to vector, then all input values must be global vectors, or columns of
global arrays. They can also be global arrays, which are converted into a series of global vectors (one per
column), as explained above.

The ave keyword determines how the values produced every Nfreq steps are averaged with values produced
on previous steps that were multiples of Nfreq, before they are accessed by another output command or
written to a file.

If the ave setting is one, then the values produced on timesteps that are multiples of Nfreq are independent of
each other; they are output as-is without further averaging.

If the ave setting is running, then the values produced on timesteps that are multiples of Nfreq are summed
and averaged in a cummulative sense before being output. Each output value is thus the average of the value
produced on that timestep with all preceding values. This running average begins when the fix is defined; it
can only be restarted by deleting the fix via the unfix command, or by re-defining the fix by re-specifying it.

If the ave setting is window, then the values produced on timesteps that are multiples of Nfreq are summed
and averaged within a moving "window" of time, so that the last M values are used to produce the output. E.g.
if M = 3 and Nfreq = 1000, then the output on step 10000 will be the average of the individual values on steps
8000,9000,10000. Outputs on early steps will average over less than M values if they are not available.

The start keyword specifies what timestep averaging will begin on. The default is step 0. Often input values
can be 0.0 at time 0, so setting start to a larger value can avoid including a 0.0 in a running or windowed
average.

The off keyword can be used to flag any of the input values. If a value is flagged, it will not be time averaged.
Instead the most recent input value will always be stored and output. This is useful if one of more of the
inputs produced by a compute or fix or variable are effectively constant or are simply current values. E.g. they
are being written to a file with other time-averaged values for purposes of creating well-formatted output.

The file keyword allows a filename to be specified. Every Nfreq steps, one quantity or vector of quantities is
written to the file for each input value specified in the fix ave/time command. For mode = scalar, this means a
single line is written each time output is performed. Thus the file ends up to be a series of lines, i.e. one
column of numbers for each input value. For mode = vector, an array of numbers is written each time output is
performed. The number of rows is the length of the input vectors, and the number of columns is the number of
values. Thus the file ends up to be a series of these array sections.

fix ave/time command 171

LIGGGHTS(R)-PUBLIC Users Manual

The overwrite keyword will continuously overwrite the output file with the latest output, so that it only
contains one timestep worth of output. This option can only be used with the ave running setting.

The title] and title2 and title3 keywords allow specification of the strings that will be printed as the first 2 or 3
lines of the output file, assuming the file keyword was used. LIGGGHTS(R)-PUBLIC uses default values for
each of these, so they do not need to be specified.

By default, these header lines are as follows for mode = scalar:

Time-averaged data for fix ID
TimeStep valuel value?2

In the first line, ID is replaced with the fix-ID. In the second line the values are replaced with the appropriate
fields from the fix ave/time command. There is no third line in the header of the file, so the fitle3 setting is
ignored when mode = scalar.

By default, these header lines are as follows for mode = vector:

Time-averaged data for fix ID
TimeStep Number-of-rows
Row valuel value?2

In the first line, ID is replaced with the fix-ID. The second line describes the two values that are printed at the
first of each section of output. In the third line the values are replaced with the appropriate fields from the fix
ave/time command.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix produces a global scalar or global vector or global array which can be accessed by various output
commands. The values can only be accessed on timesteps that are multiples of Nfreg since that is when
averaging is performed.

A scalar is produced if only a single input value is averaged and mode = scalar. A vector is produced if
multiple input values are averaged for mode = scalar, or a single input value for mode = vector. In the first
case, the length of the vector is the number of inputs. In the second case, the length of the vector is the same
as the length of the input vector. An array is produced if multiple input values are averaged and mode =
vector. The global array has # of rows = length of the input vectors and # of columns = number of inputs.

If the fix prouduces a scalar or vector, then the scalar and each element of the vector can be either "intensive"
or "extensive". If the fix produces an array, then all elements in the array must be the same, either "intensive"
or "extensive". If a compute or fix provides the value being time averaged, then the compute or fix determines
whether the value is intensive or extensive; see the doc page for that compute or fix for further info. Values

produced by a variable are treated as intensive.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:

compute, fix ave/atom, fix ave/spatial, fix ave/histo, variable, fix ave/correlate,

fix ave/time command 172

LIGGGHTS(R)-PUBLIC Users Manual

Default: none

The option defaults are mode = scalar, ave = one, start = 0, no file output, title 1,2,3 = strings as described
above, and no off settings for any input values.

fix ave/time command 173

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix bond/break command

Syntax:
fix ID group-ID bond/break Nevery bondtype Rmax keyword values ...

¢ ID, group-ID are documented in fix command

¢ bond/break = style name of this fix command

¢ Nevery = attempt bond breaking every this many steps

¢ bondtype = type of bonds to break

¢ Rmax = bond longer than Rmax can break (distance units)
¢ zero or more keyword/value pairs may be appended to args
¢ keyword = prob

prob values = fraction seed
fraction = break a bond with this probability if otherwise eligible
seed = random number seed (positive integer)

Examples:

fix 5 all bond/break 10 2 1.2
fix 5 polymer bond/break 1 1 2.0 prob 0.5 49829

Description:

Break bonds between pairs of atoms as a simulation runs according to specified criteria. This can be used to
model the dissolution of a polymer network due to stretching of the simulation box or other deformations. In
this context, a bond means an interaction between a pair of atoms computed by the bond style command.
Once the bond is broken it will be permanently deleted. This is different than a pairwise bond-order potential
such as Tersoff or AIREBO which infers bonds and many-body interactions based on the current geometry of
a small cluster of atoms and effectively creates and destroys bonds from timestep to timestep as atoms move.

A check for possible bond breakage is performed every Nevery timesteps. If two bonded atoms I,J are further
than a distance Rmax of each other, if the bond is of type bondtype, and if both I and J are in the specified fix
group, then L] is labeled as a "possible" bond to break.

If several bonds involving an atom are stretched, it may have multiple possible bonds to break. Every atom
checks its list of possible bonds to break and labels the longest such bond as its "sole" bond to break. After
this is done, if atom I is bonded to atom J in its sole bond, and atom J is bonded to atom I in its sole bond, then
the I,J bond is "eligible" to be broken.

Note that these rules mean an atom will only be part of at most one broken bond on a given timestep. It also
means that if atom I chooses atom J as its sole partner, but atom J chooses atom K is its sole partner (due to
Rjk > Rij), then this means atom I will not be part of a broken bond on this timestep, even if it has other
possible bond partners.

The prob keyword can effect whether an eligible bond is actually broken. The fraction setting must be a value
between 0.0 and 1.0. A uniform random number between 0.0 and 1.0 is generated and the eligible bond is only

broken if the random number < fraction.

When a bond is broken, data structures within LIGGGHTS(R)-PUBLIC that store bond topology are updated
to reflect the breakage. This can also affect subsequent computation of pairwise interactions involving the

fix bond/break command 174

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

atoms in the bond. See the Restriction section below for additional information.

Computationally, each timestep this fix operates, it loops over bond lists and computes distances between
pairs of bonded atoms in the list. It also communicates between neighboring processors to coordinate which
bonds are broken. Thus it will increase the cost of a timestep. Thus you should be cautious about invoking this
fix too frequently.

You can dump out snapshots of the current bond topology via the dump local command.

IMPORTANT NOTE: Breaking a bond typically alters the energy of a system. You should be careful not to
choose bond breaking criteria that induce a dramatic change in energy. For example, if you define a very stiff
harmonic bond and break it when 2 atoms are separated by a distance far from the equilibribum bond length,
then the 2 atoms will be dramatically released when the bond is broken. More generally, you may need to
thermostat your system to compensate for energy changes resulting from broken bonds.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix _modify options are relevant to
this fix.

This fix computes two statistics which it stores in a global vector of length 2, which can be accessed by
various output commands. The vector values calculated by this fix are "intensive".

These are the 2 quantities:

¢ (1) # of bonds broken on the most recent breakage timestep
¢ (2) cummulative # of bonds broken

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with that package.
See the Making LIGGGHTS(R)-PUBLIC section for more info.

Currently, there are 2 restrictions for using this fix. We may relax these in the future if there are new models
that would be enabled by it.

When a bond is broken, you might wish to turn off angle and dihedral interactions that include that bond.
However, LIGGGHTS(R)-PUBLIC does not check for these angles and dihedrals, even if your simulation

defines an angle style or dihedral style.

This fix requires that the pairwise weightings defined by the special bonds command be 0,1,1 for 1-2, 1-3,
and 1-4 neighbors within the bond topology. This effectively means that the pairwise interaction between
atoms I and J is turned off when a bond between them exists and will be turned on when the bond is broken. It
also means that the pairwise interaction of I with J's other bond partners is unaffected by the existence of the
bond.

Related commands:

fix bond/create, fix bond/swap, dump local, special bonds

Default:

fix bond/break command 175

LIGGGHTS(R)-PUBLIC Users Manual

The option defaults are prob = 1.0.

fix bond/break command 176

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix bond/create command

Syntax:

fix ID group-ID bond/create Nevery itype jtype Rmin bondtype keyword values

¢ ID, group-ID are documented in fix command

¢ bond/create = style name of this fix command

¢ Nevery = attempt bond creation every this many steps

¢ itype,jtype = atoms of itype can bond to atoms of jtype

¢ Rmin = 2 atoms separated by less than Rmin can bond (distance units)
® bondtype = type of created bonds

® zero or more keyword/value pairs may be appended to args

¢ keyword = iparam or jparam or prob

iparam values = maxbond, newtype

maxbond = max # of bonds of bondtype the itype atom can have

newtype = change the itype atom to this type when maxbonds exist
jparam values = maxbond, newtype

maxbond = max # of bonds of bondtype the jtype atom can have

newtype = change the jtype atom to this type when maxbonds exist
prob values = fraction seed

fraction = create a bond with this probability if otherwise eligible

seed = random number seed (positive integer)

Examples:

fix 5 all bond/create 10 1 2 0.8 1
fix 5 all bond/create 1 3 3 0.8 1 prob 0.5 85784 iparam 2 3

Description:

Create bonds between pairs of atoms as a simulation runs according to specified criteria. This can be used to
model cross-linking of polymers, the formation of a percolation network, etc. In this context, a bond means an
interaction between a pair of atoms computed by the bond style command. Once the bond is created it will be
permanently in place.

A check for possible new bonds is performed every Nevery timesteps. If two atoms IJ are within a distance
Rmin of each other, if I is of atom type itype, if J is of atom type jtype, if both I and J are in the specified fix
group, if a bond does not already exist between I and J, and if both I and J meet their respective maxbond
requirement (explained below), then L] is labeled as a "possible" bond pair.

If several atoms are close to an atom, it may have multiple possible bond partners. Every atom checks its list
of possible bond partners and labels the closest such partner as its "sole" bond partner. After this is done, if
atom I has atom J as its sole partner, and atom J has atom I as its sole partner, then the 1,J bond is "eligible" to
be formed.

Note that these rules mean an atom will only be part of at most one created bond on a given timestep. It also
means that if atom I chooses atom J as its sole partner, but atom J chooses atom K is its sole partner (due to
Rjk < Rij), then this means atom I will not form a bond on this timestep, even if it has other possible bond
partners.

fix bond/create command 177

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

It is permissible to have itype = jtype. Rmin must be <= the pairwise cutoff distance between itype and jtype
atoms, as defined by the pair_style command.

The iparam and jparam keywords can be used to limit the bonding functionality of the participating atoms.
Each atom keeps track of how many bonds of bondtype it already has. If atom I of itype already has maxbond
bonds (as set by the iparam keyword), then it will not form any more. Likewise for atom J. If maxbond is set
to 0, then there is no limit on the number of bonds that can be formed with that atom.

The newtype value for iparam and jparam can be used to change the atom type of atom I or J when it reaches
maxbond number of bonds of type bondtype. This means it can now interact in a pairwise fashion with other
atoms in a different way by specifying different pair_coeff coefficients. If you do not wish the atom type to
change, simply specify newtype as itype or jtype.

The prob keyword can also effect whether an eligible bond is actually created. The fraction setting must be a
value between 0.0 and 1.0. A uniform random number between 0.0 and 1.0 is generated and the eligible bond
is only created if the random number < fraction.

Any bond that is created is assigned a bond type of bondtype. Data structures within LIGGGHTS(R)-PUBLIC
that store bond topology are updated to reflect the new bond. This can also affect subsequent computation of
pairwise interactions involving the atoms in the bond. See the Restriction section below for additional
information.

IMPORTANT NOTE: To create a new bond, the internal LIGGGHTS(R)-PUBLIC data structures that store
this information must have space for it. When LIGGGHTS(R)-PUBLIC is initialized from a data file, the list
of bonds is scanned and the maximum number of bonds per atom is tallied. If some atom will acquire more
bonds than this limit as this fix operates, then the "extra bonds per atom" parameter in the data file header
must be set to allow for it. See the read data command for more details. Note that if this parameter needs to
be set, it means a data file must be used to initialize the system, even if it initially has no bonds. A data file
with no atoms can be used if you wish to add unbonded atoms via the create atoms command, e.g. for a
percolation simulation.

IMPORTANT NOTE: LIGGGHTS(R)-PUBLIC also maintains a data structure that stores a list of 1st, 2nd,
and 3rd neighbors of each atom (in the bond topology of the system) for use in weighting pairwise interactions
for bonded atoms. Adding a bond adds a single entry to this list. The "extra" keyword of the special bonds
command should be used to leave space for new bonds if the maximum number of entries for any atom will be
exceeded as this fix operates. See the special bonds command for details.

Note that even if your simulation starts with no bonds, you must define a bond style and use the bond coeff
command to specify coefficients for the bondtype. Similarly, if new atom types are specified by the iparam or
Jjparam keywords, they must be within the range of atom types allowed by the simulation and pairwise
coefficients must be specified for the new types.

Computationally, each timestep this fix operates, it loops over neighbor lists and computes distances between
pairs of atoms in the list. It also communicates between neighboring processors to coordinate which bonds are
created. Thus it roughly doubles the cost of a timestep. Thus you should be cautious about invoking this fix
too frequently.

You can dump out snapshots of the current bond topology via the dump local command.

IMPORTANT NOTE: Creating a bond typically alters the energy of a system. You should be careful not to
choose bond creation criteria that induce a dramatic change in energy. For example, if you define a very stiff
harmonic bond and create it when 2 atoms are separated by a distance far from the equilibribum bond length,
then the 2 atoms will oscillate dramatically when the bond is formed. More generally, you may need to
thermostat your system to compensate for energy changes resulting from created bonds.

fix bond/create command 178

LIGGGHTS(R)-PUBLIC Users Manual

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes two statistics which it stores in a global vector of length 2, which can be accessed by
various output commands. The vector values calculated by this fix are "intensive".

These are the 2 quantities:

¢ (1) # of bonds created on the most recent creation timestep
¢ (2) cummulative # of bonds created

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

This fix is part of the MC package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with that package.
See the Making LIGGGHTS(R)-PUBLIC section for more info.

Currently, there are 2 restrictions for using this fix. We may relax these in the future if there are new models
that would be enabled by it.

When a bond is created, you might wish to induce new angle and dihedral interactions that include that bond.
However, LIGGGHTS(R)-PUBLIC does not create these angles and dihedrals, even if your simulation

defines an angle style or dihedral style.

This fix requires that the pairwise weightings defined by the special bonds command be 0,1,1 for 1-2, 1-3,
and 1-4 neighbors within the bond topology. This effectively means that the pairwise interaction between
atoms I and J will be turned off when a bond between them is created. It also means that the pairwise
interaction of I with J's other bond partners will be unaffected by the new bond.

Related commands:

fix bond/break, fix bond/swap, dump local, special bonds

Default:

The option defaults are iparam = (0,itype), jparam = (0,jtype), and prob = 1.0.

fix bond/create command 179

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix box/relax command
Syntax:
fix ID group-ID box/relax keyword value

¢ ID, group-ID are documented in fix command
¢ box/relax = style name of this fix command

one or more keyword value pairs may be appended

keyword = iso or aniso or tri Oor X Or y Or z Or Xy Or yz Oor xz or couple or nreset or vmax
iso or aniso or tri value = Ptarget = desired pressure (pressure units)
X Or y Or z Or Xy Or yz or xz value = Ptarget = desired pressure (pressure units)
couple = none Or Xyz Or Xy Or yzZ Or XZ
nreset value = reset reference cell every this many minimizer iterations
vmax value = fraction = max allowed volume change in one iteration
dilate value = all or partial

scaleyz value = yes or no = scale yz with 1z
scalexz value yes or no = scale xz with 1z
scalexy value yes or no = scale xy with ly
fixedpoint values = x y z
X,y,2z = perform relaxation dilation/contraction around this point (distance units)

Examples:

fix 1 all box/relax iso 0.0 vmax 0.001
fix 2 water box/relax aniso 0.0 dilate partial
fix 2 ice box/relax tri 0.0 couple xy nreset 100

Description:

Apply an external pressure or stress tensor to the simulation box during an energy minimization. This allows
the box size and shape to vary during the iterations of the minimizer so that the final configuration will be
both an energy minimum for the potential energy of the atoms, and the system pressure tensor will be close to
the specified external tensor. Conceptually, specifying a positive pressure is like squeezing on the simulation
box; a negative pressure typically allows the box to expand.

The external pressure tensor is specified using one or more of the iso, aniso, tri, x, y, z, Xy, Xz, yz, and couple
keywords. These keywords give you the ability to specify all 6 components of an external stress tensor, and to
couple various of these components together so that the dimensions they represent are varied together during
the mimimization.

Orthogonal simulation boxes have 3 adjustable dimensions (x,y,z). Triclinic (non-orthogonal) simulation
boxes have 6 adjustable dimensions (X,y,z,xy,xz,yz). The create box, read data, and read restart commands
specify whether the simulation box is orthogonal or non-orthogonal (triclinic) and explain the meaning of the
Xy,Xz,yz tilt factors.

The target pressures Ptarget for each of the 6 components of the stress tensor can be specified independently
via the x, y, z, xy, xz, yz keywords, which correspond to the 6 simulation box dimensions. For example, if the y
keyword is used, the y-box length will change during the minimization. If the xy keyword is used, the xy tilt
factor will change. A box dimension will not change if that component is not specified.

Note that in order to use the xy, xz, or yz keywords, the simulation box must be triclinic, even if its initial tilt
factors are 0.0.

fix box/relax command 180

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

When the size of the simulation box changes, all atoms are re-scaled to new positions, unless the keyword
dilate is specified with a value of partial, in which case only the atoms in the fix group are re-scaled. This can
be useful for leaving the coordinates of atoms in a solid substrate unchanged and controlling the pressure of a
surrounding fluid.

The scaleyz, scalexz, and scalexy keywords control whether or not the corresponding tilt factors are scaled
with the associated box dimensions when relaxing triclinic periodic cells. The default values yes will turn on
scaling, which corresponds to adjusting the linear dimensions of the cell while preserving its shape. Choosing
no ensures that the tilt factors are not scaled with the box dimensions. See below for restrictions and default
values in different situations. In older versions of LIGGGHTS(R)-PUBLIC, scaling of tilt factors was not
performed. The old behavior can be recovered by setting all three scale keywords to no.

The fixedpoint keyword specifies the fixed point for cell relaxation. By default, it is the center of the box.
Whatever point is chosen will not move during the simulation. For example, if the lower periodic boundaries
pass through (0,0,0), and this point is provided to fixedpoint, then the lower periodic boundaries will remain at
(0,0,0), while the upper periodic boundaries will move twice as far. In all cases, the particle positions at each
iteration are unaffected by the chosen value, except that all particles are displaced by the same amount,
different on each iteration.

IMPORTANT NOTE: Appling an external pressure to tilt dimensions xy, xz, yz can sometimes result in
arbitrarily large values of the tilt factors, i.e. a dramatically deformed simulation box. This typically indicates
that there is something badly wrong with how the simulation was constructed. The two most common sources
of this error are applying a shear stress to a liquid system or specifying an external shear stress tensor that
exceeds the yield stress of the solid. In either case the minimization may converge to a bogus conformation or
not converge at all. Also note that if the box shape tilts to an extreme shape, LIGGGHTS(R)-PUBLIC will run
less efficiently, due to the large volume of communication needed to acquire ghost atoms around a processor's
irregular-shaped sub-domain. For extreme values of tilt, LIGGGHTS(R)-PUBLIC may also lose atoms and
generate an error.

The couple keyword allows two or three of the diagonal components of the pressure tensor to be "coupled"
together. The value specified with the keyword determines which are coupled. For example, xz means the Pxx
and Pzz components of the stress tensor are coupled. Xyz means all 3 diagonal components are coupled.
Coupling means two things: the instantaneous stress will be computed as an average of the corresponding
diagonal components, and the coupled box dimensions will be changed together in lockstep, meaning coupled
dimensions will be dilated or contracted by the same percentage every timestep. The Ptarget values for any
coupled dimensions must be identical. Couple xyz can be used for a 2d simulation; the z dimension is simply
ignored.

The iso, aniso, and tri keywords are simply shortcuts that are equivalent to specifying several other keywords
together.

The keyword iso means couple all 3 diagonal components together when pressure is computed (hydrostatic
pressure), and dilate/contract the dimensions together. Using "iso Ptarget" is the same as specifying these 4
keywords:

x Ptarget
y Ptarget
z Ptarget
couple xyz

The keyword aniso means x, y, and z dimensions are controlled independently using the Pxx, Pyy, and Pzz
components of the stress tensor as the driving forces, and the specified scalar external pressure. Using "aniso

Ptarget" is the same as specifying these 4 keywords:

x Ptarget

fix box/relax command 181

LIGGGHTS(R)-PUBLIC Users Manual

y Ptarget
z Ptarget
couple none

The keyword tri means x, y, z, xy, xz, and yz dimensions are controlled independently using their individual
stress components as the driving forces, and the specified scalar pressure as the external normal stress. Using
"tri Ptarget" is the same as specifying these 7 keywords:

x Ptarget

y Ptarget

z Ptarget
xy 0.0

yz 0.0

xz 0.0
couple none

The vmax keyword can be used to limit the fractional change in the volume of the simulation box that can
occur in one iteration of the minimizer. If the pressure is not settling down during the minimization this can be
because the volume is fluctuating too much. The specified fraction must be greater than 0.0 and should be <<
1.0. A value of 0.001 means the volume cannot change by more than 1/10 of a percent in one iteration when
couple xyz has been specified. For any other case it means no linear dimension of the simulation box can
change by more than 1/10 of a percent.

With this fix, the potential energy used by the minimizer is augmented by an additional energy provided by
the fix. The overall objective function then is:

B=U+ F)t (‘ == ‘0) T Estrain,

where U is the system potential energy, P_t is the desired hydrostatic pressure, V and V_0 are the system and
reference volumes, respectively. E_strain is the strain energy expression proposed by Parrinello and Rahman
(Parrinello1981). Taking derivatives of E w.r.t. the box dimensions, and setting these to zero, we find that at

the minimum of the objective function, the global system stress tensor P will satisfy the relation:

P = PI+S, (hy?) ho

where I is the identity matrix, h_0 is the box dimension tensor of the reference cell, and h_0d is the diagonal
part of h_0. S_¢ is a symmetric stress tensor that is chosen by LIGGGHTS(R)-PUBLIC so that the
upper-triangular components of P equal the stress tensor specified by the user.

This equation only applies when the box dimensions are equal to those of the reference dimensions. If this is
not the case, then the converged stress tensor will not equal that specified by the user. We can resolve this
problem by periodically resetting the reference dimensions. The keyword nreset_ref controls how often this is
done. If this keyword is not used, or is given a value of zero, then the reference dimensions are set to those of
the initial simulation domain and are never changed. A value of nsfep means that every nstep minimization
steps, the reference dimensions are set to those of the current simulation domain. Note that resetting the
reference dimensions changes the objective function and gradients, which sometimes causes the minimization
to fail. This can be resolved by changing the value of nreset, or simply continuing the minimization from a
restart file.

fix box/relax command 182

LIGGGHTS(R)-PUBLIC Users Manual

IMPORTANT NOTE: As normally computed, pressure includes a kinetic- energy or temperature-dependent
component; see the compute pressure command. However, atom velocities are ignored during a minimization,
and the applied pressure(s) specified with this command are assumed to only be the virial component of the
pressure (the non-kinetic portion). Thus if atoms have a non-zero temperature and you print the usual
thermodynamic pressure, it may not appear the system is converging to your specified pressure. The solution
for this is to either (a) zero the velocities of all atoms before performing the minimization, or (b) make sure
you are monitoring the pressure without its kinetic component. The latter can be done by outputting the
pressure from the fix this command creates (see below) or a pressure fix you define yourself.

IMPORTANT NOTE: Because pressure is often a very sensitive function of volume, it can be difficult for the
minimizer to equilibrate the system the desired pressure with high precision, particularly for solids. Some
techniques that seem to help are (a) use the "min_modify line quadratic” option when minimizing with box
relaxations, and (b) minimize several times in succession if need be, to drive the pressure closer to the target
pressure. Also note that some systems (e.g. liquids) will not sustain a non-hydrostatic applied pressure, which
means the minimizer will not converge.

This fix computes a temperature and pressure each timestep. The temperature is used to compute the kinetic
contribution to the pressure, even though this is subsequently ignored by default. To do this, the fix creates its
own computes of style "temp" and "pressure”, as if these commands had been issued:

compute fix-ID_temp group-ID temp
compute fix-ID_press group-I1D pressure fix-ID_temp virial

See the compute temp and compute pressure commands for details. Note that the IDs of the new computes are
the fix-ID + underscore + "temp" or fix_ID + underscore + "press", and the group for the new computes is the
same as the fix group. Also note that the pressure compute does not include a kinetic component.

Note that these are NOT the computes used by thermodynamic output (see the thermo style command) with
ID = thermo_temp and thermo_press. This means you can change the attributes of this fix's temperature or
pressure via the compute modify command or print this temperature or pressure during thermodynamic
output via the thermo_style custom command using the appropriate compute-ID. It also means that changing
attributes of thermo_temp or thermo_press will have no effect on this fix.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify femp and press options are supported by this fix. You can use them to assign a compute you
have defined to this fix which will be used in its temperature and pressure calculation, as described above.
Note that as described above, if you assign a pressure compute to this fix that includes a kinetic energy
component it will affect the minimization, most likely in an undesirable way.

IMPORTANT NOTE: If both the femp and press keywords are used in a single thermo_modify command (or
in two separate commands), then the order in which the keywords are specified is important. Note that a
pressure compute defines its own temperature compute as an argument when it is specified. The temp
keyword will override this (for the pressure compute being used by fix npt), but only if the remp keyword
comes after the press keyword. If the remp keyword comes before the press keyword, then the new pressure
compute specified by the press keyword will be unaffected by the femp setting.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
pressure-volume energy, plus the strain energy, if it exists.

No parameter of this fix can be used with the start/stop keywords of the run command.

fix box/relax command 183

LIGGGHTS(R)-PUBLIC Users Manual

This fix is invoked during energy minimization, but not for the purpose of adding a contribution to the energy
or forces being minimized. Instead it alters the simulation box geometry as described above.

Restrictions:

Only dimensions that are available can be adjusted by this fix. Non-periodic dimensions are not available. z,
xz, and yz, are not available for 2D simulations. xy, xz, and yz are only available if the simulation domain is
non-orthogonal. The create box, read data, and read restart commands specify whether the simulation box is
orthogonal or non-orthogonal (triclinic) and explain the meaning of the xy,xz,yz tilt factors.

The scaleyz yes and scalexz yes keyword/value pairs can not be used for 2D simulations. scaleyz yes, scalexz
yes, and scalexy yes options can only be used if the 2nd dimension in the keyword is periodic, and if the tilt
factor is not coupled to the barostat via keywords #ri, yz, xz, and xy.

Related commands:

fix npt, minimize

Default:

The keyword defaults are dilate = all, vmax = 0.0001, nreset = 0.

(Parrinello1981) Parrinello and Rahman, J Appl Phys, 52, 7182 (1981).

fix box/relax command 184

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix check/timestep/gran command

Syntax:

fix ID group-ID check/timestep/gran nevery fraction_r fraction_h

¢ ID, group-ID are documented in fix command

¢ check/timestep/gran = style name of this fix command

¢ nevery = evaluate time-step size accuracy every this many time-steps

e fraction_r = warn if time-step size exceeds this fraction of the Rayleigh time
e fraction_h = warn if time-step size exceeds this fraction of the Hertz time

Examples:

fix ts_check all check/timestep/gran 1000 0.1 0.1
Description:

Periodically calculate estimations of the Rayleigh- and Hertz time dt_r and dt_h for a granular system every
nevery' time-steps. The user can specify two quantities fraction_r and fraction_h. A warning message is
printed if the time-step size as specified via the timestep command exceeds either of dt_r * fraction_r or dt_h
* fraction_h.

The former quantity is
dt_r = PI*r*sqrt(rho/G)/(0.1631*nu+0.8766),

where rho is particle density, G is the shear modulus and nu is Poisson's ratio. The latter quantity is expressed
by

dt_h = 2.87*(m_eff 2/(r_eff*Y_eff*2*v_max))"0.2.

The effective mass m_eff, the effective radius r_eff and the effective Young's modulus Y_eff are as defined in
pair gran. v_max is the maximum relative velocity, taking mesh movement into account. Please note that the
Hertz criterion will also be used if you use a different granular pair style (e.g. Hooke).

Additionally, this command checks the ratio of skin to the distance that particles can travel relative to each
other in one time-step. This value should be >1, otherwise some interactions may be missed or overlap energy
may be generated artificially. This command will warn you if this is the case.

These criteria are checked every 'nevery' time-steps. Rayleigh time dt_r is calculated for each particle in the
simulation, and the minimum value is taken for further calculations. Hertz time dt_h is estimated by testing a
collision of each particle with itself using v_max as the assumed collision velocity.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. This fix computes a 3-vector, for access by various output commands. The vector consists of the
time-step size expressed as fraction of the Rayleigh and Hertz time-step sizes and the ratio of skin to the
distance particles can travel relative to each other in one time-step, respectively. No parameter of this fix can
be used with the start/stop keywords of the run command. This fix is not invoked during energy minimization.

fix check/timestep/gran command 185

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Restrictions: none
Related commands: none

Default: none

fix check/timestep/gran command 186

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands
fix deform command
Syntax:
fix ID group-ID deform N parameter args ... keyword value

¢ ID, group-ID are documented in fix command

e deform = style name of this fix command

e N = perform box deformation every this many timesteps
® one or more parameter/arg pairs may be appended

parameter = X Or y Or z Or Xy OY XZ Or yZ
X, y, z args = style value(s)
style = final or delta or scale or vel or erate or trate or volume or wiggle or variab
final values = lo hi
lo hi = box boundaries at end of run (distance units)
delta values = dlo dhi
dlo dhi = change in box boundaries at end of run (distance units)
scale values = factor
factor = multiplicative factor for change in box length at end of run
vel value = V
V = change box length at this velocity (distance/time units),
effectively an engineering strain rate
erate value = R
R = engineering strain rate (1/time units)
trate value = R
R = true strain rate (1/time units)
volume value = none = adjust this dim to preserve volume of system
wiggle values = A Tp
A = amplitude of oscillation (distance units)
Tp = period of oscillation (time units)
variable values = v_namel v_name2

v_namel = variable with namel for box length change as function of time
v_name2 = variable with name2 for change rate as function of time
Xy, Xz, yz args = style value
style = final or delta or vel or erate or trate or wiggle

final value = tilt
tilt = tilt factor at end of run (distance units)

delta value = dtilt
dtilt = change in tilt factor at end of run (distance units)

vel value = V
V = change tilt factor at this velocity (distance/time units),
effectively an engineering shear strain rate
erate value = R
R = engineering shear strain rate (1/time units)
trate value = R
R = true shear strain rate (1/time units)
wiggle values = A Tp
A = amplitude of oscillation (distance units)
Tp = period of oscillation (time units)
variable values = v_namel v_name2
v_namel = variable with namel for tilt change as function of time
v_name2 = variable with name2 for change rate as function of time

e zero or more keyword/value pairs may be appended
¢ keyword = remap or flip or units

remap value = x or v or none
x = remap coords of atoms in group into deforming box
v = remap velocities of all atoms when they cross periodic boundaries
none = no remapping of x or v

fix deform command 187

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

flip value = yes or no

allow or disallow box flips when it becomes highly skewed
units value = lattice or box

lattice = distances are defined in lattice units

box = distances are defined in simulation box units

Examples:

fix 1 all deform 1 x final 0.0 9.0 z final 0.0 5.0 units box
fix 1 all deform 1 x trate 0.1 y volume z volume

fix 1 all deform 1 xy erate 0.001 remap v

fix 1 all deform 10 y delta -0.5 0.5 xz vel 1.0

Description:

Change the volume and/or shape of the simulation box during a dynamics run. Orthogonal simulation boxes
have 3 adjustable parameters (x,y,z). Triclinic (non-orthogonal) simulation boxes have 6 adjustable
parameters (X,y,Z,Xy,XZ,yZ). Any or all of them can be adjusted independently and simultaneously by this
command.

For the x, y, z parameters, the associated dimension cannot be shrink-wrapped. For the xy, yz, xz parameters,
the associated 2nd dimension cannot be shrink-wrapped. Dimensions not varied by this command can be
periodic or non-periodic. Dimensions corresponding to unspecified parameters can also be controlled by a fix
npt or fix nph command.

The size and shape of the simulation box at the beginning of the simulation run were either specified by the
create _box or read data or read restart command used to setup the simulation initially if it is the first run, or
they are the values from the end of the previous run. The create box, read data, and read restart commands
specify whether the simulation box is orthogonal or non-orthogonal (triclinic) and explain the meaning of the
Xy,xz,yz tilt factors. If fix deform changes the xy,xz,yz tilt factors, then the simulation box must be triclinic,
even if its initial tilt factors are 0.0.

As described below, the desired simulation box size and shape at the end of the run are determined by the
parameters of the fix deform command. Every Nth timestep during the run, the simulation box is expanded,
contracted, or tilted to ramped values between the initial and final values.

For the x, y, and z parameters, this is the meaning of their styles and values.

The final, delta, scale, vel, and erate styles all change the specified dimension of the box via "constant
displacement" which is effectively a "constant engineering strain rate". This means the box dimension
changes linearly with time from its initial to final value.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or
box distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can
be in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if
the initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0
means compression.

For style vel, a velocity at which the box length changes is specified in units of distance/time. This is
effectively a "constant engineering strain rate", where rate = V/L0 and LO is the initial box length. The
distance can be in lattice or box distance units. See the discussion of the units keyword below. For example, if
the initial box length is 100 Angstroms, and V is 10 Angstroms/psec, then after 10 psec, the box length will

fix deform command 188

LIGGGHTS(R)-PUBLIC Users Manual
have doubled. After 20 psec, it will have tripled.

The erate style changes a dimension of the the box at a "constant engineering strain rate". The units of the
specified strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Tensile strain is unitless and is defined as delta/L0,
where LO is the original box length and delta is the change relative to the original length. The box length L as
a function of time will change as

L(t) = LO (1 + erate*dt)

where dt is the elapsed time (in time units). Thus if erate R is specified as 0.1 and time units are picoseconds,
this means the box length will increase by 10% of its original length every picosecond. L.e. strain after 1 psec
= 0.1, strain after 2 psec = 0.2, etc. R =-0.01 means the box length will shrink by 1% of its original length
every picosecond. Note that for an "engineering" rate the change is based on the original box length, so
running with R = 1 for 10 picoseconds expands the box length by a factor of 11 (strain of 10), which is
different that what the trate style would induce.

The trate style changes a dimension of the box at a "constant true strain rate". Note that this is not an
"engineering strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, which
means the box dimension changes non-linearly with time from its initial to final value. The units of the
specified strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Tensile strain is unitless and is defined as delta/L0,
where L0 is the original box length and delta is the change relative to the original length.

The box length L as a function of time will change as
L(t) = LO exp(trate*dt)

where dt is the elapsed time (in time units). Thus if trate R is specified as In(1.1) and time units are
picoseconds, this means the box length will increase by 10% of its current (not original) length every
picosecond. L.e. strain after 1 psec = 0.1, strain after 2 psec = 0.21, etc. R = In(2) or In(3) means the box length
will double or triple every picosecond. R = In(0.99) means the box length will shrink by 1% of its current
length every picosecond. Note that for a "true" rate the change is continuous and based on the current length,
so running with R = In(2) for 10 picoseconds does not expand the box length by a factor of 11 as it would with
erate, but by a factor of 1024 since the box length will double every picosecond.

Note that to change the volume (or cross-sectional area) of the simulation box at a constant rate, you can
change multiple dimensions via erate or trate. E.g. to double the box volume in a picosecond picosecond, you
could set "x erate M", "y erate M", "z erate M", with M = pow(2,1/3) - 1 = 0.26, since if each box dimension
grows by 26%, the box volume doubles. Or you could set "x trate M", "y trate M", "z trate M", with M =
In(1.26) = 0.231, and the box volume would double every picosecond.

The volume style changes the specified dimension in such a way that the box volume remains constant while
other box dimensions are changed explicitly via the styles discussed above. For example, "x scale 1.1 y scale
1.1 z volume" will shrink the z box length as the x,y box lengths increase, to keep the volume constant
(product of x,y,z lengths). If "x scale 1.1 z volume" is specified and parameter y is unspecified, then the z box
length will shrink as x increases to keep the product of x,z lengths constant. If "x scale 1.1 y volume z
volume" is specified, then both the y,z box lengths will shrink as x increases to keep the volume constant
(product of x,y,z lengths). In this case, the y,z box lengths shrink so as to keep their relative aspect ratio
constant.

For solids or liquids, note that when one dimension of the box is expanded via fix deform (i.e. tensile strain),
it may be physically undesirable to hold the other 2 box lengths constant (unspecified by fix deform) since
that implies a density change. Using the volume style for those 2 dimensions to keep the box volume constant
may make more physical sense, but may also not be correct for materials and potentials whose Poisson ratio is

fix deform command 189

LIGGGHTS(R)-PUBLIC Users Manual

not 0.5. An alternative is to use fix npt aniso with zero applied pressure on those 2 dimensions, so that they
respond to the tensile strain dynamically.

The wiggle style oscillates the specified box length dimension sinusoidally with the specified amplitude and
period. L.e. the box length L as a function of time is given by

L(t) = L0 + A sin(2*pi t/Tp)

where LO is its initial length. If the amplitude A is a positive number the box initially expands, then contracts,
etc. If A is negative then the box initially contracts, then expands, etc. The amplitude can be in lattice or box
distance units. See the discussion of the units keyword below.

The variable style changes the specified box length dimension by evaluating a variable, which presumably is
a function of time. The variable with namel must be an equal-style variable and should calculate a change in
box length in units of distance. Note that this distance is in box units, not lattice units; see the discussion of
the units keyword below. The formula associated with variable namel can reference the current timestep.
Note that it should return the "change" in box length, not the absolute box length. This means it should
evaluate to 0.0 when invoked on the initial timestep of the run following the definition of fix deform. It should
evaluate to a value > 0.0 to dilate the box at future times, or a value < 0.0 to compress the box.

The variable name?2 must also be an gqual-style variable and should calculate the rate of box length change, in
units of distance/time, i.e. the time-derivative of the namel variable. This quantity is used internally by
LIGGGHTS(R)-PUBLIC to reset atom velocities when they cross periodic boundaries. It is computed
internally for the other styles, but you must provide it when using an arbitrary variable.

Here is an example of using the variable style to perform the same box deformation as the wiggle style
formula listed above, where we assume that the current timestep = 0.

variable A equal 5.0

variable Tp equal 10.0

variable displace equal "v_A * sin(2*PI * step*dt/v_Tp)"
variable rate equal "2*PI*v_A/v_Tp * cos(2*PI * step*dt/v_Tp)"
fix 2 all deform 1 x variable v_displace v_rate remap v

For the scale, vel, erate, trate, volume, wiggle, and variable styles, the box length is expanded or compressed
around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt
factors of a triclinic box does not change its volume.

The final, delta, vel, and erate styles all change the shear strain at a "constant engineering shear strain rate".
This means the tilt factor changes linearly with time from its initial to final value.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the
discussion of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

For style vel, a velocity at which the tilt factor changes is specified in units of distance/time. This is
effectively an "engineering shear strain rate", where rate = V/LO and LO is the initial box length perpendicular
to the direction of shear. The distance can be in lattice or box distance units. See the discussion of the units
keyword below. For example, if the initial tilt factor is 5 Angstroms, and the V is 10 Angstroms/psec, then
after 1 psec, the tilt factor will be 15 Angstroms. After 2 psec, it will be 25 Angstroms.

fix deform command 190

LIGGGHTS(R)-PUBLIC Users Manual

The erate style changes a tilt factor at a "constant engineering shear strain rate". The units of the specified
shear strain rate are 1/time. See the units command for the time units associated with different choices of
simulation units, e.g. picoseconds for "metal" units). Shear strain is unitless and is defined as offset/length,
where length is the box length perpendicular to the shear direction (e.g. y box length for xy deformation) and
offset is the displacement distance in the shear direction (e.g. x direction for xy deformation) from the
unstrained orientation.

The tilt factor T as a function of time will change as
T(t) = TO + LO*erate*dt

where TO is the initial tilt factor, LO is the original length of the box perpendicular to the shear direction (e.g.
y box length for xy deformation), and dt is the elapsed time (in time units). Thus if erate R is specified as 0.1
and time units are picoseconds, this means the shear strain will increase by 0.1 every picosecond. L.e. if the xy
shear strain was initially 0.0, then strain after 1 psec = 0.1, strain after 2 psec = 0.2, etc. Thus the tilt factor
would be 0.0 at time 0, 0.1*ybox at 1 psec, 0.2*ybox at 2 psec, etc, where ybox is the original y box length. R
=1 or 2 means the tilt factor will increase by 1 or 2 every picosecond. R = -0.01 means a decrease in shear
strain by 0.01 every picosecond.

The trate style changes a tilt factor at a "constant true shear strain rate". Note that this is not an "engineering
shear strain rate", as the other styles are. Rather, for a "true" rate, the rate of change is constant, which means
the tilt factor changes non-linearly with time from its initial to final value. The units of the specified shear
strain rate are 1/time. See the units command for the time units associated with different choices of simulation
units, e.g. picoseconds for "metal" units). Shear strain is unitless and is defined as offset/length, where length
is the box length perpendicular to the shear direction (e.g. y box length for xy deformation) and offset is the
displacement distance in the shear direction (e.g. x direction for xy deformation) from the unstrained
orientation.

The tilt factor T as a function of time will change as
T(t) = TO exp(trate*dt)

where TO is the initial tilt factor and dt is the elapsed time (in time units). Thus if trate R is specified as In(1.1)
and time units are picoseconds, this means the shear strain or tilt factor will increase by 10% every
picosecond. L.e. if the xy shear strain was initially 0.1, then strain after 1 psec = 0.11, strain after 2 psec =
0.121, etc. R =1n(2) or In(3) means the tilt factor will double or triple every picosecond. R = In(0.99) means
the tilt factor will shrink by 1% every picosecond. Note that the change is continuous, so running with R =
In(2) for 10 picoseconds does not change the tilt factor by a factor of 10, but by a factor of 1024 since it
doubles every picosecond. Note that the initial tilt factor must be non-zero to use the frate option.

Note that shear strain is defined as the tilt factor divided by the perpendicular box length. The erate and trate
styles control the tilt factor, but assume the perpendicular box length remains constant. If this is not the case
(e.g. it changes due to another fix deform parameter), then this effect on the shear strain is ignored.

The wiggle style oscillates the specified tilt factor sinusoidally with the specified amplitude and period. L.e.
the tilt factor T as a function of time is given by

T(t) = TO + A sin(2*pi t/Tp)

where TO is its initial value. If the amplitude A is a positive number the tilt factor initially becomes more
positive, then more negative, etc. If A is negative then the tilt factor initially becomes more negative, then
more positive, etc. The amplitude can be in lattice or box distance units. See the discussion of the units
keyword below.

fix deform command 191

LIGGGHTS(R)-PUBLIC Users Manual

The variable style changes the specified tilt factor by evaluating a variable, which presumably is a function of
time. The variable with namel must be an equal-style variable and should calculate a change in tilt in units of
distance. Note that this distance is in box units, not lattice units; see the discussion of the units keyword
below. The formula associated with variable namel can reference the current timestep. Note that it should
return the "change" in tilt factor, not the absolute tilt factor. This means it should evaluate to 0.0 when
invoked on the initial timestep of the run following the definition of fix deform.

The variable name?2 must also be an equal-style variable and should calculate the rate of tilt change, in units of
distance/time, i.e. the time-derivative of the namel variable. This quantity is used internally by
LIGGGHTS(R)-PUBLIC to reset atom velocities when they cross periodic boundaries. It is computed
internally for the other styles, but you must provide it when using an arbitrary variable.

Here is an example of using the variable style to perform the same box deformation as the wiggle style
formula listed above, where we assume that the current timestep = 0.

variable A equal 5.0

variable Tp equal 10.0

variable displace equal "v_A * sin(2*PI * step*dt/v_Tp)"
variable rate equal "2*PI*v_A/v_Tp * cos(2*PI * step*dt/v_Tp)"
fix 2 all deform 1 xy variable v_displace v_rate remap v

All of the tilt styles change the Xy, xz, yz tilt factors during a simulation. In LIGGGHTS(R)-PUBLIC, tilt
factors (xy,xz,yz) for triclinic boxes are normally bounded by half the distance of the parallel box length. See
the discussion of the flip keyword below, to allow this bound to be exceeded, if desired.

For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and
5. Similarly, both xz and yz must be between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation,
since if the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25,
... are all equivalent.

To obey this constraint and allow for large shear deformations to be applied via the xy, xz, or yz parameters,
the following algorithm is used. If prd is the associated parallel box length (10 in the example above), then if
the tilt factor exceeds the accepted range of -5 to 5 during the simulation, then the box is flipped to the other
limit (an equivalent box) and the simulation continues. Thus for this example, if the initial xy tilt factor was
0.0 and "xy final 100.0" was specified, then during the simulation the xy tilt factor would increase from 0.0 to
5.0, the box would be flipped so that the tilt factor becomes -5.0, the tilt factor would increase from -5.0 to
5.0, the box would be flipped again, etc. The flip occurs 10 times and the final tilt factor at the end of the
simulation would be 0.0. During each flip event, atoms are remapped into the new box in the appropriate
manner.

The one exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case,
the limits on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom
positions due to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will
simply become inefficient due to the highly skewed simulation box.

Each time the box size or shape is changed, the remap keyword determines whether atom positions are
remapped to the new box. If remap is set to x (the default), atoms in the fix group are remapped; otherwise
they are not. Note that their velocities are not changed, just their positions are altered. If remap is set to v, then
any atom in the fix group that crosses a periodic boundary will have a delta added to its velocity equal to the
difference in velocities between the lo and hi boundaries. Note that this velocity difference can include tilt
components, e.g. a delta in the x velocity when an atom crosses the y periodic boundary. If remap is set to
none, then neither of these remappings take place.

Conceptually, setting remap to x forces the atoms to deform via an affine transformation that exactly matches
the box deformation. This setting is typically appropriate for solids. Note that though the atoms are effectively

fix deform command 192

LIGGGHTS(R)-PUBLIC Users Manual

"moving" with the box over time, it is not due to their having a velocity that tracks the box change, but only
due to the remapping. By contrast, setting remap to v is typically appropriate for fluids, where you want the
atoms to respond to the change in box size/shape on their own and acquire a velocity that matches the box
change, so that their motion will naturally track the box without explicit remapping of their coordinates.

IMPORTANT NOTE: When non-equilibrium MD (NEMD) simulations are performed using this fix, the
option "remap v" should normally be used. This is because fix nvt/sllod adjusts the atom positions and
velocities to induce a velocity profile that matches the changing box size/shape. Thus atom coordinates should
NOT be remapped by fix deform, but velocities SHOULD be when atoms cross periodic boundaries, since
that is consistent with maintaining the velocity profile already created by fix nvt/sllod.
LIGGGHTS(R)-PUBLIC will warn you if the remap setting is not consistent with fix nvt/sllod.

IMPORTANT NOTE: For non-equilibrium MD (NEMD) simulations using "remap v" it is usually desirable
that the fluid (or flowing material, e.g. granular particles) stream with a velocity profile consistent with the
deforming box. As mentioned above, using a thermostat such as fix nvt/sllod or fix lavgevin (with a bias
provided by compute temp/deform), will typically accomplish that. If you do not use a thermostat, then there
is no driving force pushing the atoms to flow in a manner consistent with the deforming box. E.g. for a
shearing system the box deformation velocity may vary from O at the bottom to 10 at the top of the box. But
the stream velocity profile of the atoms may vary from -5 at the bottom to +5 at the top. You can monitor
these effects using the fix ave/spatial, compute temp/deform, and compute temp/profile commands. One way
to induce atoms to stream consistent with the box deformation is to give them an initial velocity profile, via
the velocity ramp command, that matches the box deformation rate. This also typically helps the system come
to equilibrium more quickly, even if a thermostat is used.

IMPORTANT NOTE: If a fix rigid is defined for rigid bodies, and remap is set to x, then the center-of-mass
coordinates of rigid bodies will be remapped to the changing simulation box. This will be done regardless of
whether atoms in the rigid bodies are in the fix deform group or not. The velocity of the centers of mass are
not remapped even if remap is set to v, since fix nvt/sllod does not currently do anything special for rigid
particles. If you wish to perform a NEMD simulation of rigid particles, you can either thermostat them
independently or include a background fluid and thermostat the fluid via fix nvt/sllod.

The flip keyword allows the tilt factors for a triclinic box to exceed half the distance of the parallel box length,
as discussed above. If the flip value is set to yes, the bound is enforced by flipping the box when it is
exceeded. If the flip value is set to no, the tilt will continue to change without flipping. Note that if you apply
large deformations, this means the box shape can tilt dramatically LIGGGHTS(R)-PUBLIC will run less
efficiently, due to the large volume of communication needed to acquire ghost atoms around a processor's
irregular-shaped sub-domain. For extreme values of tilt, LIGGGHTS(R)-PUBLIC may also lose atoms and
generate an error.

The units keyword determines the meaning of the distance units used to define various arguments. A box
value selects standard distance units as defined by the units command, e.g. Angstroms for units = real or
metal. A lattice value means the distance units are in lattice spacings. The lattice command must have been
previously used to define the lattice spacing. Note that the units choice also affects the vel style parameters
since it is defined in terms of distance/time. Also note that the units keyword does not affect the variable
style. You should use the xlat, ylat, zlat keywords of the thermo_style command if you want to include lattice
spacings in a variable formula.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands.

This fix can perform deformation over multiple runs, using the start and stop keywords of the run command.
See the run command for details of how to do this.

fix deform command 193

LIGGGHTS(R)-PUBLIC Users Manual
This fix is not invoked during energy minimization.

Restrictions:
You cannot apply x, y, or z deformations to a dimension that is shrink-wrapped via the boundary comamnd.

You cannot apply Xy, yz, or xz deformations to a 2nd dimension (y in xy) that is shrink-wrapped via the
boundary comamnd.

Related commands:

change box

Default:

The option defaults are remap = X, flip = yes, and units = lattice.

fix deform command 194

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix drag command
Syntax:
fix ID group-ID drag x y z fmag delta
¢ ID, group-ID are documented in fix command
e drag = style name of this fix command
® x,y,z = coord to drag atoms towards
¢ fmag = magnitude of force to apply to each atom (force units)
e delta = cutoff distance inside of which force is not applied (distance units)
Examples:
fix center small-molecule drag 0.0 10.0 0.0 5.0 2.0

Description:

Apply a force to each atom in a group to drag it towards the point (X,y,z). The magnitude of the force is
specified by fmag. If an atom is closer than a distance delta to the point, then the force is not applied.

Any of the x,y,z values can be specified as NULL which means do not include that dimension in the distance
calculation or force application.

This command can be used to steer one or more atoms to a new location in the simulation.
Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms by the drag force. The vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:

fix spring, fix spring/self, fix spring/rg, fix smd

Default: none

fix drag command 195

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix dt/reset command

Syntax:
fix ID group-ID dt/reset N Tmin Tmax Xmax keyword values

¢ ID, group-ID are documented in fix command

e dt/reset = style name of this fix command

¢ N = recompute dt every N timesteps

¢ Tmin = minimum dt allowed which can be NULL (time units)

¢ Tmax = maximum dt allowed which can be NULL (time units)

¢ Xmax = maximum distance for an atom to move in one timestep (distance units)
¢ zero or more keyword/value pairs may be appended

¢ keyword = units

units value = lattice or box
lattice = Xmax is defined in lattice units
box = Xmax is defined in simulation box units

Examples:

fix 5 all dt/reset 10 1.0e-5 0.01 0.1
fix 5 all dt/reset 10 0.01 2.0 0.2 units box

Description:

Reset the timestep size every N steps during a run, so that no atom moves further than Xmax, based on current
atom velocities and forces. This can be useful when starting from a configuration with overlapping atoms,
where forces will be large. Or it can be useful when running an impact simulation where one or more
high-energy atoms collide with a solid, causing a damage cascade.

This fix overrides the timestep size setting made by the timestep command. The new timestep size df is
computed in the following manner.

For each atom, the timestep is computed that would cause it to displace Xmax on the next integration step, as a
function of its current velocity and force. Since performing this calculation exactly would require the solution
to a quartic equation, a cheaper estimate is generated. The estimate is conservative in that the atom's

displacement is guaranteed not to exceed Xmax, though it may be smaller.

Given this putative timestep for each atom, the minimum timestep value across all atoms is computed. Then
the Tmin and Tmax bounds are applied, if specified. If one (or both) is specified as NULL, it is not applied.

When the run style is respa, this fix resets the outer loop (largest) timestep, which is the same timestep that
the timestep command sets.

Note that the cumulative simulation time (in time units), which accounts for changes in the timestep size as a
simulation proceeds, can be accessed by the thermo style time keyword.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

fix dt/reset command 196

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

This fix computes a global scalar which can be accessed by various output commands. The scalar stores the
last timestep on which the timestep was reset to a new value.

The scalar value calculated by this fix is "intensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

timestep

Default:

The option defaults is units = lattice.

fix dt/reset command 197

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix efield command

Syntax:
fix ID group-ID efield ex ey ez keyword value ...

¢ ID, group-ID are documented in fix command

¢ efield = style name of this fix command

¢ ex.ey,ez = E-field component values (electric field units)

¢ any of ex,ey,ez can be a variable (see below)

® zero or more keyword/value pairs may be appended to args
¢ keyword = region or energy

region value = region-ID
region-ID = ID of region atoms must be in to have added force
energy value = v_name
v_name = variable with name that calculates the potential energy of each atom in the a

Examples:
fix kick external-field efield 1.0 0.0 0.0
fix kick external-field efield 0.0 0.0 v_oscillate

Description:

Add a force F = gE to each charged atom in the group due to an external electric field being applied to the
system. If the system contains point-dipoles, also add a torque on the dipoles due to the external electric field.

For charges, any of the 3 quantities defining the E-field components can be specified as an equal-style or
atom-style variable, namely ex, ey, ez. If the value is a variable, it should be specified as v_name, where name
is the variable name. In this case, the variable will be evaluated each timestep, and its value used to determine
the E-field component.

For point-dipoles, equal-style variables can be used, but atom-style variables are not currently supported,
since they imply a spatial gradient in the electric field which means additional terms with gradients of the field
are required for the force and torque on dipoles.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent E-field.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent E-field with optional
time-dependence as well.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Adding a force or torque to atoms implies a change in their potential energy as they move or rotate due to the
applied E-field.

fix efield command 198

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

For dynamics via the "run" command, this energy can be optionally added to the system's potential energy for
thermodynamic output (see below). For energy minimization via the "minimize" command, this energy must
be added to the system's potential energy to formulate a self-consistent minimization problem (see below).

The energy keyword is not allowed if the added field is a constant vector (ex,ey,ez), with all components
defined as numeric constants and not as variables. This is because LIGGGHTS(R)-PUBLIC can compute the
energy for each charged particle directly as E = -x dot qE = -q (x*ex + y*ey + z*ez), so that -Grad(E) = F.
Similarly for point-dipole particles the energy can be computed as E = -mu dot E = -(mux*ex + muy*ey +
muz*ez).

The energy keyword is optional if the added force is defined with one or more variables, and if you are
performing dynamics via the run command. If the keyword is not used, LIGGGHTS(R)-PUBLIC will set the
energy to 0.0, which is typically fine for dynamics.

The energy keyword is required if the added force is defined with one or more variables, and you are
performing energy minimization via the "minimize" command for charged particles. It is not required for
point-dipoles, but a warning is issued since the minimizer in LIGGGHTS(R)-PUBLIC does not rotate dipoles,
so you should not expect to be able to minimize the orientation of dipoles in an applied electric field.

The energy keyword specifies the name of an atom-style variable which is used to compute the energy of each
atom as function of its position. Like variables used for ex, ey, ez, the energy variable is specified as v_name,
where name is the variable name.

Note that when the energy keyword is used during an energy minimization, you must insure that the formula
defined for the atom-style variable is consistent with the force variable formulas, i.e. that -Grad(E) = F. For
example, if the force due to the electric field were a spring-like F = kx, then the energy formula should be E =
-0.5kx"2. If you don't do this correctly, the minimization will not converge properly.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" inferred by the added
force due to the electric field to the system's potential energy as part of thermodynamic output. This is a
fictitious quantity but is needed so that the minimize command can include the forces added by this fix in a
consistent manner. L.e. there is a decrease in potential energy when atoms move in the direction of the added
force due to the electric field.

This fix computes a global scalar and a global 3-vector of forces, which can be accessed by various output
commands. The scalar is the potential energy discussed above. The vector is the total force added to the group
of atoms. The scalar and vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
You should not specify force components with a variable that has time-dependence for use with a minimizer,
since the minimizer increments the timestep as the iteration count during the minimization.

IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the
fix_modify energy option for this fix.

Restrictions: none

fix efield command 199

LIGGGHTS(R)-PUBLIC Users Manual

Related commands:
fix_ addforce

Default: none

fix efield command 200

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix enforce2d command
Syntax:
fix ID group-ID enforce2d

¢ ID, group-ID are documented in fix command
¢ enforce2d = style name of this fix command

Examples:
fix 5 all enforce2d
Description:

Zero out the z-dimension velocity and force on each atom in the group. This is useful when running a 2d
simulation to insure that atoms do not move from their initial z coordinate.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start#/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
Restrictions: none

Related commands: none

Default: none

fix enforce2d command 201

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix external command

Syntax:
fix ID group-ID external mode args

¢ ID, group-ID are documented in fix command
e external = style name of this fix command
¢ mode = pf/callback or pf/array

pf/callback args = Ncall Napply
Ncall = make callback every Ncall steps
Napply = apply callback forces every Napply steps
pf/array args = Napply
Napply = apply array forces every Napply steps

Examples:

fix 1 all external pf/callback 1 1
fix 1 all external pf/callback 100 1
fix 1 all external pf/array 10

Description:
This fix allows external programs that are running LIGGGHTS(R)-PUBLIC through its library interface to

modify certain LIGGGHTS(R)-PUBLIC properties on specific timesteps, similar to the way other fixes do.
The external driver can be a C/C++ or Fortran program or a Python script.

If mode is pf/callback then the fix will make a callback every Ncall timesteps or minimization iterations to the
external program. The external program computes forces on atoms by setting values in an array owned by the
fix. The fix then adds these forces to each atom in the group, once every Napply steps, similar to the way the
fix addforce command works. Note that if Ncall > Napply, the force values produced by one callback will
persist, and be used multiple times to update atom forces.

The callback function "foo" is invoked by the fix as:
foo(void *ptr, bigint timestep, int nlocal, int *ids, double **x, double **fexternal);
The arguments are as follows:
e ptr = pointer provided by and simply passed back to external driver
¢ timestep = current LIGGGHTS(R)-PUBLIC timestep
¢ nlocal = # of atoms on this processor
¢ ids = list of atom IDs on this processor
¢ x = coordinates of atoms on this processor
e fexternal = forces to add to atoms on this processor
Note that timestep is a "bigint" which is defined in src/Imptype.h, typically as a 64-bit integer.

Fexternal are the forces returned by the driver program.

The fix has a set_callback() method which the external driver can call to pass a pointer to its foo() function.
See the couple/lammps_quest/Impgst.cpp file in the LIGGGHTS(R)-PUBLIC distribution for an example of

fix external command 202

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

how this is done. This sample application performs classical MD using quantum forces computed by a density
functional code Quest.

If mode is pf/array then the fix simply stores force values in an array. The fix adds these forces to each atom
in the group, once every Napply steps, similar to the way the fix addforce command works.

The name of the public force array provided by the FixExternal class is

double **fexternal;

It is allocated by the FixExternal class as an (N,3) array where N is the number of atoms owned by a
processor. The 3 corresponds to the fx, fy, fz components of force.

It is up to the external program to set the values in this array to the desired quantities, as often as desired. For
example, the driver program might perform an MD run in stages of 1000 timesteps each. In between calls to
the LIGGGHTS(R)-PUBLIC run command, it could retrieve atom coordinates from
LIGGGHTS(R)-PUBLIC, compute forces, set values in fexternal, etc.

To use this fix during energy minimization, the energy corresponding to the added forces must also be set so
as to be consistent with the added forces. Otherwise the minimization will not converge correctly.

This can be done from the external driver by calling this public method of the FixExternal class:
void set_energy (double eng);
where eng is the potential energy. Eng is an extensive quantity, meaning it should be the sum over per-atom

energies of all affected atoms. It should also be provided in energy units consistent with the simulation. See
the details below for how to insure this energy setting is used appropriately in a minimization.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the potential "energy" set by the external driver
to the system's potential energy as part of thermodynamic output. This is a fictitious quantity but is needed so
that the minimize command can include the forces added by this fix in a consistent manner. I.e. there is a

decrease in potential energy when atoms move in the direction of the added force.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the
potential energy discussed above. The scalar stored by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
IMPORTANT NOTE: If you want the fictitious potential energy associated with the added forces to be
included in the total potential energy of the system (the quantity being minimized), you MUST enable the
fix_modify energy option for this fix.

Restrictions: none

Related commands: none

Default: none

fix external command 203

http://dft.sandia.gov/Quest

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix freeze command
Syntax:
fix ID group-ID freeze

¢ ID, group-ID are documented in fix command
¢ freeze = style name of this fix command

Examples:

fix 2 bottom freeze

Description:

Zero out the force and torque on a granular particle. This is useful for preventing certain particles from

moving in a simulation. The granular pair styles also detect if this fix has been defined and compute
interactions between frozen and non-frozen particles appropriately, as if the frozen particle has infinite mass.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms before the forces on individual atoms are changed by the fix. The vector

values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

There can only be a single freeze fix defined. This is because other the granular pair styles treat frozen
particles differently and need to be able to reference a single group to which this fix is applied.

Related commands: none

atom_stvle sphere

Default: none

fix freeze command 204

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix gravity command

Syntax:
fix ID group gravity magnitude style args

¢ ID, group are documented in fix command

e gravity = style name of this fix command

® magnitude = size of acceleration (force/mass units)
® magnitude can be a variable (see below)

e style = chute or spherical or gradient or vector

chute args = angle

angle = angle in +x away from -z or -y axis in 3d/2d (in degrees)
angle can be a variable (see below)

spherical args = phi theta
phi = azimuthal angle from +x axis (in degrees)
theta = angle from +z or +y axis in 3d/2d (in degrees)
phi or theta can be a variable (see below)

vector args = X y z
X y z = vector direction to apply the acceleration
X Oor y or z can be a variable (see below)

Examples:

fix 1 all gravity 1.0 chute 24.0

fix 1 all gravity v_increase chute 24.0

fix 1 all gravity 1.0 spherical 0.0 -180.0

fix 1 all gravity 10.0 spherical v_phi v_theta
fix 1 all gravity 100.0 vector 1 1 O
Description:

Impose an additional acceleration on each particle in the group. This fix is typically used with granular
systems to include a "gravity" term acting on the macroscopic particles. More generally, it can represent any
kind of driving field, e.g. a pressure gradient inducing a Poiseuille flow in a fluid. Note that this fix operates
differently than the fix addforce command. The addforce fix adds the same force to each atom, independent of
its mass. This command imparts the same acceleration to each atom (force/mass).

The magnitude of the acceleration is specified in force/mass units. For granular systems (LJ units) this is
typically 1.0. See the units command for details.

Style chute is typically used for simulations of chute flow where the specified angle is the chute angle, with
flow occurring in the +x direction. For 3d systems, the tilt is away from the z axis; for 2d systems, the tilt is
away from the y axis.

Style spherical allows an arbitrary 3d direction to be specified for the acceleration vector. Phi and theta are
defined in the usual spherical coordinates. Thus for acceleration acting in the -z direction, theta would be
180.0 (or -180.0). Theta = 90.0 and phi = -90.0 would mean acceleration acts in the -y direction. For 2d
systems, phi is ignored and theta is an angle in the xy plane where theta = 0.0 is the y-axis.

Style vector imposes an acceleration in the vector direction given by (X,y,z). Only the direction of the vector is
important; it's length is ignored. For 2d systems, the z component is ignored.

fix gravity command 205

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Any of the quantities magnitude, angle, phi, theta, x, y, z which define the gravitational magnitude and
direction, can be specified as an equal-style variable. If the value is a variable, it should be specified as
v_name, where name is the variable name. In this case, the variable will be evaluated each timestep, and its
value used to determine the quantity. You should insure that the variable calculates a result in the approriate
units, e.g. force/mass or degrees.

Equal-style variables can specify formulas with various mathematical functions, and include thermo _style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent gravitational field.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the gravitational potential energy of the system
to the system's potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. This scalar is the
gravitational potential energy of the particles in the defined field, namely mass * (g dot x) for each particles,
where x and mass are the particles position and mass, and g is the gravitational field. The scalar value

calculated by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:

atom_style sphere, fix addforce

Default: none

fix gravity command 206

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix heat/gran command

fix heat/gran/conduction command

Syntax:

fix ID group-ID heat/gran initial_temperature T0 keyword values

fix ID group-ID heat/gran/conduction initial_temperature TO keyword values

¢ ID, group-ID are documented in fix command

e heat/gran/conduction or fix heat/gran = style name of this fix command
¢ initial_temperature = obligatory keyword

¢ TO = initial (default) temperature for the particles

¢ zero or more keyword/value pairs may be appended

¢ keyword = contact_area or area_correction

contact_area values = overlap or constant value or projection
area_correction values = yes or no

Examples:

fix 3 hg heat/gran/conduction initial_ temperature 273.15

LIGGGHTS(R)-PUBLIC vs. LIGGGHTS(R)-PUBLIC info:
This command is not available in LIGGGHTS(R)-PUBLIC.
Description:

Calculates heat conduction between particles in contact and temperature update according to

L]
QPJ—M = 'hc-r'—j "ITPJ-PJ

ci-j = k +k contact.i-f
bi e
dT L) L)
¥}
mp cp d = Zpr—pj + Qp.‘ source
t contacts i-j e——

T heat generation
heat conduction due to sources,
by contacts &g reactions

he heat transfer coefficient [i]

ki thermal conductivity of particle | [K;TmJ

) . J
5 fic th / ity | —
cp specific thermal capaci :.'[kgK}

Acontact j-j Particle contact area[m-]

fix heat/gran command 207

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

It is assumed that the temperature within the particles is uniform. To make particles adiabatic (so they do
not change the temperature), do not include them in the fix group. However, heat transfer is calculated
between particles in the group and particles not in the group (but temperature update is not performed for
particles not in the group). Thermal conductivity and specific thermal capacity must be defined for each
atom type used in the simulation by means of fix property/global commands:

fix id all property/global thermalConductivity peratomtype value_1l value_2
(value_i=value for thermal conductivity of atom type 1i)

fix id all property/global thermalCapacity peratomtype value_1 value_2
(value_i=value for thermal capacity of atom type 1)

To set the temperature for a group of particles, you can use the set command with keyword property/atom
and values Temp T. T is the temperature value you want the particles to have. To set heat sources (or sinks)
for a group of particles, you can also use the set command with the set keyword: property/atom and the set
values: heatSource h where h is the heat source value you want the particles to have (in Energy/time units).
A negative value means it is a heat sink. Examples would be:

set region halfbed property/peratom Temp 800.
set region srcreg property/peratom heatSource 0.5

Contact area calculation:

Using keyword contact_area, you can choose from 3 modes of calulating the contact area for
particle-particle heat transfer: If overlap is used, the contact area is calculated from the area of the
sphere-sphere intersection If constant is used, a constant user-defined overlap area is assumed. If projection
is used, the overlap area is assumed to be equal to rmin*rmin*Pi, where rmin is the radius of the smaller of
the two particles in contact.

Area correction:

For contact_area = overlap, an area correction can additionally be performed using keyword
area_correction to account for the fact that the Young's modulus might have been decreased in order to
speed-up the simulation, thus artificially increasing the overlap. In this case, you have to specify the
original Young's modulus of each material by means of a fix property/global command:

fix id all property/global youngsModulusOriginal peratomtype value_1 value_2
(value_i=value for original Young's modulus of atom type 1)

This area correction is performed by scaling the contact area with (Y*/Y*,orig)*a, where Y* and Y*,orig
are calculated as defined in pair_style gran . The scaling factor is given as e.g. a=1 for a Hooke and a=2/3
for a Hertz interaction.

Output info:

You can visualize the heat sources by accessing f_heatSource[0], and the heatFluxes by f_heatFlux[0] .
With f_directionalHeatFlux[0], f_directionalHeatFlux[1] and f_directionalHeatFlux[2] you can access the
conductive heat fluxes in x,y,z directions. The conductive heat fluxes are calculated per-contact and half the
value is stored in each atom participating in the contact. With f_Temp[0] you can access the per-particle
temperature. You can also access the total thermal energy of the fix group (useful for the thermo command)
with f_id .

Restart, fix_modify, run start/stop, minimize info:

The particle temperature and heat source is written is written to binary restart files so simulations can
continue properly. None of the fix_modify options are relevant to this fix.

fix heat/gran/conduction command 208

LIGGGHTS(R)-PUBLIC Users Manual

This fix computes a scalar which can be accessed by various output commands. This scalar is the total
thermal energy of the fix group

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not
invoked during energy minimization.

Restrictions:
none
Related commands:

compute temp, compute temp/region

Default: contact_area = overlap, area_correction = off

fix heat/gran/conduction command 209

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix command

Syntax:
fix ID group-ID style args

¢ ID = user-assigned name for the fix

¢ group-ID = ID of the group of atoms to apply the fix to

¢ style = one of a long list of possible style names (see below)
¢ args = arguments used by a particular style

Examples:

fix 1 all nve
fix 3 all nvt temp 300.0 300.0 0.01
fix mine top setforce 0.0 NULL 0.0

Description:

Set a fix that will be applied to a group of atoms. In LIGGGHTS(R)-PUBLIC, a "fix" is any operation that is
applied to the system during timestepping or minimization. Examples include updating of atom positions and
velocities due to time integration, controlling temperature, applying constraint forces to atoms, enforcing
boundary conditions, computing diagnostics, etc. There are dozens of fixes defined in
LIGGGHTS(R)-PUBLIC and new ones can be added; see this section for a discussion.

The full list of fixes defined in LIGGGHTS(R)-PUBLIC is on this page.

Fixes perform their operations at different stages of the timestep. If 2 or more fixes operate at the same stage
of the timestep, they are invoked in the order they were specified in the input script.

The ID of a fix can only contain alphanumeric characters and underscores.

Fixes can be deleted with the unfix command.

IMPORTANT NOTE: The unfix command is the only way to turn off a fix; simply specifying a new fix with
a similar style will not turn off the first one. This is especially important to realize for integration fixes. For
example, using a fix nve command for a second run after using a fix nvt command for the first run, will not
cancel out the NVT time integration invoked by the "fix nvt" command. Thus two time integrators would be
in place!

If you specify a new fix with the same ID and style as an existing fix, the old fix is deleted and the new one is
created (presumably with new settings). This is the same as if an "unfix" command were first performed on
the old fix, except that the new fix is kept in the same order relative to the existing fixes as the old one
originally was. Note that this operation also wipes out any additional changes made to the old fix via the
fix_modify command.

The fix modify command allows settings for some fixes to be reset. See the doc page for individual fixes for
details.

Some fixes store an internal "state" which is written to binary restart files via the restart or write restart
commands. This allows the fix to continue on with its calculations in a restarted simulation. See the
read restart command for info on how to re-specify a fix in an input script that reads a restart file. See the doc

fix command 210

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

pages for individual fixes for info on which ones can be restarted.

Some fixes calculate one of three styles of quantities: global, per-atom, or local, which can be used by other
commands or output as described below. A global quantity is one or more system-wide values, e.g. the energy
of a wall interacting with particles. A per-atom quantity is one or more values per atom, e.g. the displacement
vector for each atom since time 0. Per-atom values are set to 0.0 for atoms not in the specified fix group.
Local quantities are calculated by each processor based on the atoms it owns, but there may be zero or more
per atoms.

Note that a single fix may produces either global or per-atom or local quantities (or none at all), but never
more than one of these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a
2d array of values. The doc page for each fix describes the style and kind of values it produces, e.g. a
per-atom vector. Some fixes produce more than one kind of a single style, e.g. a global scalar and a global
vector.

When a fix quantity is accessed, as in many of the output commands discussed below, it can be referenced via
the following bracket notation, where ID is the ID of the fix:

f ID entire scalar, vector, or array

f ID[I] |one element of vector, one column of array

f_ID[I][J] |one element of array

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array ->
vector). Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar
fix values as input can also process elements of a vector or array.

Note that commands and variables which use fix quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
fix quantity as f_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LIGGGHTS(R)-PUBLIC, the values generated by a fix can be used in several ways:

¢ Global values can be output via the thermo _style custom or fix ave/time command. Or the values can
be referenced in a yariable equal or variable atom command.

® Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or
they can be time-averaged via the fix ave/atom command or reduced by the compute reduce
command. Or the per-atom values can be referenced in an atom-style variable.

¢ Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command.

See this howto section for a summary of various LIGGGHTS(R)-PUBLIC output options, many of which
involve fixes.

The results of fixes that calculate global quantities can be either "intensive" or "extensive" values. Intensive
means the value is independent of the number of atoms in the simulation, e.g. temperature. Extensive means
the value scales with the number of atoms in the simulation, e.g. total rotational kinetic energy.
Thermodynamic output will normalize extensive values by the number of atoms in the system, depending on
the "thermo_modify norm" setting. It will not normalize intensive values. If a fix value is accessed in another
way, e.g. by a variable, you may want to know whether it is an intensive or extensive value. See the doc page
for individual fixes for further info.

fix command 211

LIGGGHTS(R)-PUBLIC Users Manual

Each fix style has its own documentation page which describes its arguments and what it does, as listed
below.

The full list of fixes defined in LIGGGHTS(R)-PUBLIC is on this page.

Restrictions:

Some fix styles are part of specific packages. They are only enabled if LIGGGHTS(R)-PUBLIC was built
with that package. See the Making LIGGGHTS(R)-PUBLIC section for more info on packages. The doc

pages for individual fixes tell if it is part of a package.

Related commands:

unfix, fix_modify

Default: none

fix command

212

LIGGGHTS(R)-PUBLIC Users Manual

LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBILIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix insert/pack command

Syntax:

fix ID group-ID insert/pack seed seed_value distributiontemplate dist-ID general_keywords general

¢ ID, group-ID are documented in fix command

e insert/pack = style names of this fix command

¢ seed = obligatory keyword

¢ seed_value = random # seed (positive integer)

¢ distributiontemplate = obligatory keyword

e dist-ID = ID of a fix_particledistribution discrete to be used for particle insertion

¢ one or more general keyword/value pairs can be appended

¢ general_keywords = verbose or maxattampt or insert_every or overlapcheck or all_in or
random_distribute or vel constant or vel uniform or vel gaussian or orientation or omega or
set_property

verbose yes or no
maxattempt value ma
ma max # of insertion attempts per atom
insert_every value once or ie
once value to signalise that isertion takes place only once (the step afte
ie every how many time-steps particles are inserted - insertion happens pe
start value ts
ts time-step at which insertion should start
overlapcheck value yes or no
all in value yes or no
random_distribute value exact or uncorrelated
vel constant values VX VY VZ

(positive integer)

(positive integer larger than

vx = x-velocity at insertion (velocity units)
vy = y-velocity at insertion (velocity units)
vz = z-velocity at insertion (velocity units)

vel uniform
mean

vFluctz
units)

values vx vy vz vFluctx vFlucty
x-velocity at insertion (velocity
y-velocity at insertion (velocity units)
z-velocity at insertion (velocity units)
amplitude of uniform x-velocity fluctuation at insertion
vFlucty amplitude of uniform y-velocity fluctuation at insertion
vEFluctz amplitude of uniform z-velocity fluctuation at insertion
vel gaussian values vx vy vz vFluctx vFlucty vFluctz
vx = mean x-velocity at insertion (velocity units)
vy = mean y-velocity at insertion (velocity units)
VZ mean z-velocity at insertion (velocity units)
vFluctx = standard deviation of Gaussian x-velocity fluctuation at
vFlucty standard deviation of Gaussian y-velocity fluctuation at
vFluctz standard deviation of Gaussian z-velocity fluctuation at
orientation values random or template
random rotational orientation
template use orientation from particle template
omega values constant omegax omegay omegaz
constant obligatory word
omegax = x-comonent of angular velocity
omegay y—-comonent of angular velocity
omegaz z—comonent of angular velocity
set_property values property-ID val
property—-ID ID of a fix propertyv/atom holding a scalar value for each part
val value to initialize the property with upon insertion

VX =
vy = mean
vZ mean
vFluctx =

(velocity
(velocity
(velocity

insertion

insertion

insertion

randomize

(1/time
(1/time
(1/time

units)
units)
units)

r the fix
riodically

current t

units)
units)
units)

(velocity
(velocity
(velocity

icle

¢ following the general keyword/value section, one or more pack keyword/value pairs can be appended

for the fix insert/pack command

fix insert/pack command

213

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

® pack_keywords = region or volumefraction_region or particles_in_region or mass_in_region or
ntry_mc

pack_keywords = where exactly one out of volumefraction_region or particles _in region or m

region value = region-ID

region-ID = ID of the region where the particles will be generated (positive integer)
volumefraction_region values = vol

vol = desired volume fraction for the region (positive float, 0 <vol <1)
particles_in_region values = np

np = desired number of particles in the region (positive integer)
mass_in_region values = m

m = desired mass in the region (positive float, m > 0)
ntry_mc values = n

n = number of Monte-Carlo steps for calculating the region's volume (positive integer

Examples:

fix ins all insert/pack seed 1001 distributiontemplate pddl insert_every once overlapcheck yes vc
Description:

Insert particles into a granular run either once or every few timesteps within the specified region, as defined
via the region keyword.

The verbose keyword controlls whether statistics about particle insertion is output to the screen each time
particles are inserted.

This command must use the distributiontemplate keyword to refer to a fix_particledistribution discrete
(defined by dist-fix-ID) that defines the properties of the inserted particles.

At each insertion step, fix insert/pack tries inserts as many particles as needed to reach a defined target, which
can be either a region volume fraction (keyword volumefraction_region), the total number of particles in the
region (keyword particles_in_region), or the total particle mass in the region (keyword mass_in_region).
Exactly one out of the keywords volumefraction_region, particles_in_region, mass_in_region must be
defined.

The frequency of the particle insertion can be controlled by the keyword insert_every, which defines the
number of time-steps between two insertions. Alternatively, by specifying insert_every once, particles are
inserted only once.

The start keyword can be used to set the time-step at which the insertion should start.

Inserted particles are assigned the atom type specified by the particledistribution defined via the
fix_particledistribution discrete and are assigned to 4 groups: the default group "all" and the group specified
in the fix insert command, as well as the groups specified in the fix_particledistribution discrete and
fix_particletemplate sphere command (all of which can also be "all").

The keyword overlapcheck controls if overlap is checked for at insertion, both within the inserted particle
package and with other existig particles. If this option is turned off, insertion will scale very well in parallel,
otherwise not. Be aware that in case of no overlap check, highly overlapping configurations will be produced,
so you will have to relax these configurations.

If overlapcheck if performed, the number of insertion attempts per particle can be specified via the
maxattempt keyword. Each timestep particles are inserted, the command will make up to a total of M tries to
insert the new particles without overlaps, where M = # of inserted particles * ma. If unsuccessful at
completing all insertions, a warning will be printed.

fix insert/pack command 214

LIGGGHTS(R)-PUBLIC Users Manual

The all_in flag determines if the particle is completely contained in the insertion region (all_in yes) or only
the particle center (all_in no). Currently all_in yes is not yet supported for all types of insertion.

Keyword random_distribute controls how the number of particles to be inserted is distributed among parallel
processors and among the particle templates in the particle distribution. For style exact, the number of
particles to be inserted each step is matched exactly. For style uncorrelated, the number of particles to be
inserted for each particle template will be rounded in an uncorrelated way, so the total number of inserted
particles may vary for each insertion step. However, statistically both ways should produce the same result.
Style uncorrelated may be faster in parallel since it does not need global MPI operations. Please note that if
the # of particles to be inserted is calculated e.g. from a particle mass to be inserted, the number of particles to
be inserted each insertion step will vary by 1, irrespective of the random_distribute settings. This is because in
this case the # of particles to insert in each step will be a floating point number, and applying a simple
floor/ceil rounding operation would lead to a statistical bias.

The initial velocity and rotational velocity can be controlled via the ve/ and omega keywords. vel constant
simply patches a constant velocity to the inserted particles, vel uniform sets uniformly distributed velocities
with mean and amplitude. vel gaussian sets Gaussian distributed particle velocities with mean and std.
deviation.

The set_property option can be used to initialize scalar per-particle properties such as temperatures, which are
stored in a a fix property/atom.

Description for fix insert/pack:

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. Dynamic regions are not supported as insertion region. Each
timestep particles are inserted, they are placed randomly inside the insertion volume.

The volumefraction option specifies what volume fraction of the insertion volume will be filled with particles.
The higher the value, the more particles are inserted each timestep. Since inserted particles should not overlap,
the maximum volume fraction should be no higher than about 0.6.

To determine the volume of the insertion region, a Monte Carlo approach might be used for some cases where
the volume is difficult to calculate or where the volume calculation is simply not implemented by the region.
The ntry_mc keyword is used to control the number of MC tries that are used for the volume calculation.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files. This means you can restart a simulation while
inserting particles, when the restart file was written during the insertion operation.

None of the fix_modify options are relevant to this fix. A global vector is stored by this fix for access by
various output commands. The first component of the vector is the number of particles already inserted, the
second component is the mass of particles already inserted. No parameter of this fix can be used with the
start/stop keywords of the run command. This fix is not invoked during gnergy minimization.

Restrictions:

The overlapcheck = 'yes' option performs an inherently serial operation and will thus not scale well in parallel.
For this reason, if you want to generate large systems, you are advised to turn overlapcheck off and let the

packing relax afterwards to generate a valid packing.

Option all_in ='yes' will not work if the region used is a tet mesh region.

fix insert/pack command 215

LIGGGHTS(R)-PUBLIC Users Manual

Keywords duration and extrude_length can not be used together.
Currently all_in yes is not yet supported for all types of insertion.
Dynamic regions are not supported as insertion region.

Related commands:

fix_insert stream, fix_insert rate region, region

Default:

The defaults are maxattempt = 50, all_in = no, overlapcheck = yes vel = 0.0 0.0 0.0, omega = 0.0 0.0 0.0, start
= next time-step, duration = insert_every, ntry_mc = 100000, random_distribute = exact

fix insert/pack command 216

LIGGGHTS(R)-PUBLIC Users Manual

LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBILIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix insert/rate/region command
Syntax:
fix ID group-ID insert/rate/region

¢ ID, group-ID are documented in fix command

e insert/pack and insert/stream = style names of these fix commands

¢ seed = obligatory keyword

¢ seed_value = random # seed (positive integer)

¢ distributiontemplate = obligatory keyword

e dist-ID = ID of a fix_particledistribution discrete to be used for particle insertion

¢ one or more general keyword/value pairs can be appended

¢ general_keywords = verbose or maxattampt or nparticles or mass or particlerate or massrate or
insert_every or overlapcheck or all_in or random_distribute or vel constant or vel uniform or vel
gaussian or orientation or omega or set_property

verbose yes or no
maxattempt value ma
ma max # of insertion attempts per atom
nparticles values np or INF

(positive integer)

np = number of particles to insert (positive integer)
INF = insert as many particles as possible

mass values = mp
mp = mass of particles to be inserted (positive float)
INF = insert as many particles as possible

particlerate values

pr

pr = particle inseration rate (particles/time units)
massrate values = mr
mr = mass inseration rate (mass/time units)

insert_every value

once or ie

seed seed_value distributiontemplate dist-ID general_keyword

once = value to signalise that isertion takes place only once (the step after the fix

ie = every how many time-steps particles are inserted - insertion happens periodically
start value = ts

ts = time-step at which insertion should start (positive integer larger than current t

overlapcheck value

all _in value

vel constant
= x-vel
y-vel
z-vel

VX
vy =
vz =
vel uniform
VX = mean
vy = mean
vZ mean
vFluctx =
vFlucty
vFluctz
vel gaussian
VX = mean
vy = mean
vZ mean
vFluctx =
vFlucty
vFluctz
orientation
random

template

r

fix insert/rate/region co

values
ocity at
ocity at
ocity at
values

x-velocity at insertion
y-velocity at insertion
z-velocity at insertion
amplitude of
amplitude of
amplitude of

values

x-velocity at insertion
y-velocity at insertion
z-velocity at insertion

standard
standard
standard
values

andomize

yes or no

yes or no
random _distribute value

exact or uncorrelated
VX VY VZ
insertion

(velocity units)

(velocity units)

(velocity units)

vx vy vz vFluctx vFlucty vFluctz

(velocity units)

(velocity units)

(velocity units)

uniform x-velocity fluctuation at insertion
uniform y-velocity fluctuation at insertion
uniform z-velocity fluctuation at insertion
vy vz vFluctx vFlucty vFluctz

(velocity units)

(velocity units)

(velocity units)

deviation of Gaussian x-velocity fluctuation at
deviation of Gaussian y-velocity fluctuation at
deviation of Gaussian z-velocity fluctuation at
random or template

rotational orientation

insertion
insertion

VX

use orientation from particle template

mmand

(velocity
(velocity
(velocity

insertion
insertion
insertion

units)
units)
units)

(velocity
(velocity
(velocity

217

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

omega values = constant omegax omegay omegaz
constant = obligatory word
omegax = x—comonent of angular velocity (1/time units)
omegay = y-comonent of angular velocity (1/time units)

omegaz = z-comonent of angular velocity (1/time units)
set_property values = property-ID val
property-ID = ID of a fix propertv/atom holding a scalar value for each particle

val = value to initialize the property with upon insertion
¢ following the general keyword/value section, one or more rate_region keyword/value pairs can be
appended for the fix insert/rate/region command
e rate_region keywords = region or ntry_mc

region value = region-ID
region-ID = ID of the region where the particles will be generated (positive integer)
ntry_mc values = n

n = number of Monte-Carlo steps for calculating the region's volume (positive integer
Examples:
fix ins all insert/rate/region seed 1001 distributiontemplate pddl nparticles 1000 particlerate 5
General description:
Insert particles into a granular run every few timesteps within a specified region at a specified rate.

The verbose keyword controlls whether statistics about particle insertion is output to the screen each time
particles are inserted.

This command must use the region keyword to define an insertion volume. The specified region must have
been previously defined with a region command. Dynamic regions are not supported as insertion region. Each
timestep particles are inserted, they are placed randomly inside the insertion volume.

To specify the number of particles to be inserted, you must use either the nparticles or the mass keyword (but
not both). In the latter case, the number of particles to be inserted is calculated from the mass expectancy
given by the particle distribution.

Likewise, you can use the particlerate or the massrate keyword (but not both) to control the insertion rate.

The frequency of the particle insertion is controlled by the keyword insert_every, which defines the number of
time-steps between two insertions. The number of particles to be inserted at each insertion event is calculated
from the insertion rate and insert_every. The start keyword can be used to set the time-step at which the
insertion should start.

This command must use the distributiontemplate keyword to refer to a fix_particledistribution discrete
(defined by dist-fix-ID) that defines the properties of the inserted particles.

Inserted particles are assigned the atom type specified by the particledistribution defined via the
fix_particledistribution discrete and are assigned to 4 groups: the default group "all" and the group specified
in the fix insert command, as well as the groups specified in the fix_particledistribution discrete and
fix_particletemplate sphere command (all of which can also be "all").

The keyword overlapcheck controls if overlap is checked for at insertion, both within the inserted particle
package and with other existig particles. If this option is turned off, insertion will scale very well in parallel,
otherwise not. Be aware that in case of no overlap check, highly overlapping configurations will be produced,
so you will have to relax these configurations.

fix insert/rate/region command 218

LIGGGHTS(R)-PUBLIC Users Manual

If overlapcheck if performed, the number of insertion attempts per particle can be specified via the
maxattempt keyword. Each timestep particles are inserted, the command will make up to a total of M tries to
insert the new particles without overlaps, where M = # of inserted particles * ma. If unsuccessful at
completing all insertions, a warning will be printed.

The all_in flag determines if the particle is completely contained in the insertion region (all_in yes) or only
the particle center (all_in no). Currently all_in yes is not yet supported for all types of insertion.

Keyword random_distribute controls how the number of particles to be inserted is distributed among parallel
processors and among the particle templates in the particle distribution. For style exact, the number of
particles to be inserted each step is matched exactly. For style uncorrelated, the number of particles to be
inserted for each particle template will be rounded in an uncorrelated way, so the total number of inserted
particles may vary for each insertion step. However, statistically both ways should produce the same result.
Style uncorrelated may be faster in parallel since it does not need global MPI operations. Please note that if
the # of particles to be inserted is calculated e.g. from a particle mass to be inserted, the number of particles to
be inserted each insertion step will vary by 1, irrespective of the random_distribute settings. This is because in
this case the # of particles to insert in each step will be a floating point number, and applying a simple
floor/ceil rounding operation would lead to a statistical bias.

The initial velocity and rotational velocity can be controlled via the ve/ and omega keywords. vel constant
simply patches a constant velocity to the inserted particles, vel uniform sets uniformly distributed velocities
with mean and amplitude. vel gaussian sets Gaussian distributed particle velocities with mean and std.

deviation.

The set_property option can be used to initialize scalar per-particle properties such as temperatures, which are
stored in a a fix property/atom.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files. This means you can restart a simulation while
inserting particles, when the restart file was written during the insertion operation.

None of the fix_modify options are relevant to this fix. A global vector is stored by this fix for access by
various output commands. The first component of the vector is the number of particles already inserted, the
second component is the mass of particles already inserted. No parameter of this fix can be used with the
start/stop keywords of the run command. This fix is not invoked during gnergy minimization.
Restrictions:

The overlapcheck = 'yes' option performs an inherently serial operation and will thus not scale well in parallel.
For this reason, if you want to generate large systems, you are advised to turn overlapcheck off and let the
packing relax afterwards to generate a valid packing.

Option all_in ='yes' will not work if the region used is a tet mesh region.

Keywords duration and extrude_length can not be used together.

Currently all_in yes is not yet supported for all types of insertion.

Dynamic regions are not supported as insertion region.

Related commands:

fix_insert stream, fix_insert pack, fix gravity, region

fix insert/rate/region command 219

LIGGGHTS(R)-PUBLIC Users Manual

Default:

The defaults are maxattempt = 50, all_in = no, overlapcheck = yes vel = 0.0 0.0 0.0, omega = 0.0 0.0 0.0, start
= next time-step, duration = insert_every, ntry_mc = 100000, random_distribute = exact

fix insert/rate/region command 220

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix insert/stream command

Syntax:

fix ID group-ID insert/stream seed seed_value distributiontemplate dist-ID general_keywords gener

¢ ID, group-ID are documented in fix command
¢ insert/stream = style name of this fix command
¢ seed = obligatory keyword
¢ seed_value = random # seed (positive integer)

¢ distributiontemplate = obligatory keyword

e dist-ID = ID of a fix_particledistribution discrete to be used for particle insertion
¢ one or more general keyword/value pairs can be appended

general_keywords
yes or no
maxattempt value
max # of insertion attempts per atom
nparticles values

verbose

ma

np
INF
mass values
mp
INF

pr

mr
ie =
start value

ts

all in value

random _distribute value

vel constant
vx = x-vel
vy = y-vel
vz z-vel
vel uniform
VX = mean
vy = mean
vVZ mean
vFluctx =
vFlucty
vFluctz
vel gaussian
VX = mean
vy = mean
vVZ mean
vFluctx =
vFlucty
vFluctz
orientation
random
template
omega values
constant
omegax =
omegay

r

= mp

mass of particles to be inserted

insert as many particles as possible
particlerate values
particle inseration rate
massrate values
mass inseration rate
insert_every value

mr

ts

time-step at which insertion should start
overlapcheck value

yes or

values
ocity at
ocity at
ocity at
values

x-velocit
y-velocit
z-velocit
amplitude
amplitude
amplitude

values

x-velocit
y-velocit
z-velocit
standard
standard
standard
values

andomize
use orie
consta
obligato

x—comonent of angular velocity
y-comonent of angular velocity

fix insert/stream command

ma

(positive integer)

np or INF
number of particles to insert
insert as many particles as possible

(positive integer)

(positive float)

pr
(particles/time units)

(mass/time units)
ie

yes or no
no
= exact or uncorrelated
VX Vy VzZ
insertion
insertion
insertion
vx vy vz vFluctx vFlucty
y at insertion (velocity
y at insertion (velocity units)
y at insertion (velocity units)
of uniform x-velocity fluctuation at insertion
of uniform y-velocity fluctuation at insertion
of uniform z-velocity fluctuation at insertion
vx vy vz vFluctx vFlucty vFluctz
y at insertion (velocity units)
y at insertion (velocity units)
y at insertion (velocity units)
deviation of Gaussian x-velocity fluctuation at
deviation of Gaussian y-velocity fluctuation at
deviation of Gaussian z-velocity fluctuation at
random or template
rotational orientation
ntation from particle template
nt omegax omegay omegaz
ry word

(velocity units)
(velocity units)
(velocity units)
vFluctz
units)

(1/time units)
(1/time units)

(velocity
(velocity
(velocity

insertion
insertion
insertion

verbose or maxattampt or nparticles or mass or particlerate or massrate

every how many time-steps particles are inserted - insertion happens periodically

(positive integer larger than current t

units)
units)
units)

(velocity
(velocity
(velocity

221

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

omegaz = z-comonent of angular velocity (1/time units)
set_property values = property-ID val
property-ID = ID of a fix propertv/atom holding a scalar value for each particle

val = value to initialize the property with upon insertion
¢ following the general keyword/value section, one or more stream keyword/value pairs can be
appended for the fix insert/stream command
e stream_keywords = duration or parallel or insertion_face or extrude_length

insertion_face value = mesh-ID

mesh—-ID = ID of the fix mesh/surface or fix mesh/surface/planar to use as starting fac
extrude_length values = L

L = length for extruding the insertion face in normal direction so to generate in ins
parallel values = yes Or no

yes, no = pre-calculate location of overlap of processor subdomains and extrusion volul
duration values = du

du = duration of insertion in time-steps

Examples:

fix ins all insert/stream seed 1001 distributiontemplate pdd1 nparticles 5000 vel constant 0. -0.5 -2.
particlerate 1000 overlapcheck yes insertion_face ins_mesh extrude_length 0.6

Description:

Insert particles into a granular run either once or every few timesteps within a specified region until either np
particles have been inserted or the desired particle mass (mp) has been reached.

The verbose keyword controlls whether statistics about particle insertion is output to the screen each time
particles are inserted.

Each timestep particles are inserted, they are placed randomly inside the insertion volume so as to mimic a
stream of poured particles. The insertion volume is generated by extruding the insertion face as specified via
insertion_face in the direction of the face normal. The sign of this face normal is automatically flipped so that
it is opposite to the normal component of the insertion velocity.

To specify the number of particles to be inserted, you must use either the nparticles or the mass keyword (but
not both). In the latter case, the number of particles to be inserted is calculated from the mass expectancy
given by the particle distribution. The start keyword can be used to set the time-step at which the insertion
should start.

Likewise, you can use the particlerate or the massrate keyword (but not both) to control the insertion rate.
Particles are not inserted continuously, but in packets (for efficiency reasons). Particles are inserted again after
enough time has elapsed that the previously inserted particles have left the insertion volume.

One of the two keywords insert_every and extrude_length must be provided by the user (but not both).

In case insert_every is defined, this sets the frequency of the particle insertion directly, i.e. the number of
time-steps between two insertions. The number of particles to be inserted at each insertion event is calculated
from the insertion rate and insert_every.

If extrude_length is specified, the amount of extrusion is fixed and the insertion frequency is calculated from
extrude_length and the insertion velocity normal to the insertion face.

When defining insert_every, you have the possibility to define the duration of each insertion via the duration
keyword. duration < insert_every will generate a "pulsed" stream as opposed to a continuous stream.
Example: Setting insert_every = 1000 and duration = 600 will produce a stream that pours material for 600
time-steps, will pause for 400 time-steps, pour for another 600 time-steps etc.

fix insert/stream command 222

LIGGGHTS(R)-PUBLIC Users Manual

As mentioned above, particles are inserted again after enough time has elapsed that the previously inserted
particles have left the insertion volume. Until the time these particles reach the insertion face, no other forces
affect the particles (pair forces, gravity etc.). Fix insert/stream internally issues a special integrator to take care
of this. This procedure guarantees that the specified velocity, omega etc. values are perfectly met at the
specified insertion face.

The larger the volume, the more particles that can be inserted at one insertion step. Insertions will continue
until the desired # of particles has been inserted.

NOTE: The insertion face must be a planar face, and the insertion velocity projected on the face normal must
be non-zero.

NOTE: Keywords insert_every and extrude_length may not be used together
NOTE: Keywords duration and extrude_length cannot be used together.

This command must use the distributiontemplate keyword to refer to a fix_particledistribution discrete
(defined by dist-fix-ID) that defines the properties of the inserted particles.

Inserted particles are assigned the atom type specified by the particledistribution defined via the
fix_particledistribution discrete and are assigned to 4 groups: the default group "all" and the group specified
in the fix insert command, as well as the groups specified in the fix_particledistribution discrete and
fix_particletemplate sphere command (all of which can also be "all").

The keyword overlapcheck controls if overlap is checked for at insertion, both within the inserted particle
package and with other existig particles. If this option is turned off, insertion will scale very well in parallel,
otherwise not. Be aware that in case of no overlap check, highly overlapping configurations will be produced,
so you will have to relax these configurations.

If overlapcheck if performed, the number of insertion attempts per particle can be specified via the
maxattempt keyword. Each timestep particles are inserted, the command will make up to a total of M tries to
insert the new particles without overlaps, where M = # of inserted particles * ma. If unsuccessful at
completing all insertions, a warning will be printed.

The all_in flag determines if the particle is completely contained in the insertion region (all_in = yes) or only
the particle center (all_in = no).Using all_in = yes requires you to use an insertion face of style fix

mesh/surface/planar

NOTE: You also have to use fix mesh/surface/planar if there is a run command between the definition of the
insertion face and the fix insert/stream command. Otherwise, a fix mesh/surface/planar will do.

Keyword random_distribute controls how the number of particles to be inserted is distributed among parallel
processors and among the particle templates in the particle distribution. For style exact, the number of
particles to be inserted each step is matched exactly. For style uncorrelated, the number of particles to be
inserted for each particle template will be rounded in an uncorrelated way, so the total number of inserted
particles may vary for each insertion step. However, statistically both ways should produce the same result.
Style uncorrelated may be faster in parallel since it does not need global MPI operations. Please note that if
the # of particles to be inserted is calculated e.g. from a particle mass to be inserted, the number of particles to
be inserted each insertion step will vary by 1, irrespective of the random_distribute settings. This is because in
this case the # of particles to insert in each step will be a floating point number, and applying a simple
floor/ceil rounding operation would lead to a statistical bias.

If keyword parallel is set to 'yes', LIGGGHTS(R)-PUBLIC tries to pre-calculate more accurately the overlap
of process subdomains and extrusion volume. For cases where the insertion volume is highly divided between

fix insert/stream command 223

LIGGGHTS(R)-PUBLIC Users Manual

different processes, this can lead to a speed-up of insertion as random number generation is more efficient.
For cases where the extrusion volume is divided among few processes this will impose a small computation
overhead.

The initial velocity and rotational velocity can be controlled via the ve/ and omega keywords. vel constant
simply patches a constant velocity to the inserted particles, vel uniform sets uniformly distributed velocities
with mean and amplitude. vel gaussian sets Gaussian distributed particle velocities with mean and std.

deviation. The insertion velocity must be non-zero.

The set_property option can be used to initialize scalar per-particle properties such as temperatures, which are
stored in a a fix property/atom.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files. This means you can restart a simulation simulation
while inserting particles, when the restart file was written during the insertion operation.

None of the fix_modify options are relevant to this fix. A global vector is stored by this fix for access by
various output commands. The first component of the vector is the number of particles already inserted, the
second component is the mass of particles already inserted. No parameter of this fix can be used with the
start/stop keywords of the run command. This fix is not invoked during gnergy minimization.
Restrictions:

Keywords duration and extrude_length can not be used together. The insertion face cannot move.

Related commands:

fix_insert pack, fix_insert rate region,

Default:

The defaults are maxattempt = 50, all_in = no, overlapcheck = yes vel = 0.0 0.0 0.0, omega = 0.0 0.0 0.0, start
= next time-step, duration = insert_every, random_distribute = exact, parallel = no

fix insert/stream command 224

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix lineforce command
Syntax:
fix ID group-ID lineforce x y z
¢ ID, group-ID are documented in fix command
¢ lineforce = style name of this fix command
¢ x y z = direction of line as a 3-vector
Examples:
fix hold boundary lineforce 0.0 1.0 1.0
Description:
Adjust the forces on each atom in the group so that only the component of force along the linear direction
specified by the vector (x,y,z) remains. This is done by subtracting out components of force in the plane

perpendicular to the line.

If the initial velocity of the atom is 0.0 (or along the line), then it should continue to move along the line
thereafter.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
Restrictions: none

Related commands:

fix planeforce

Default: none

fix lineforce command 225

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix massflow/mesh command

Syntax:
fix id group massflow/mesh mesh mesh-ID vec_side vx vy vz keyword value

¢ ID, group-ID are documented in fix command

¢ massflow/mesh = style name of this fix command

¢ mesh = obligatory keyword

¢ mesh-ID = ID of a fix mesh/surface command

¢ vec_side = obligatory keyword

® vX, vy, vz = vector components defining the "outside" of the mesh

® zero or more keyword/value pairs may be appended to args

® keywords = count or point_at_outlet or append or file or screen or delete_atoms

count value = once or multiple
once = count particles only once
multiple = allow particles to be counted multiple times
point_at_outlet pointX point¥Y pointZ
pointX pointY pointZ = coordinates of point on the outlet side of the surface

inside_ out
use this in connection with point_at_outlet to flip direction particle counting
file value = filename
append value = filename
filename = name of the file to print diameter, position and velocity values of the part
screen value = yes or no
writeTime
include this keyword to write the time to the out files
delete_atoms value = yes Oor no
yes = to remove the particles that pass through the mesh surface

Examples:

fix mass all massflow/mesh mesh inface vec_side 0. 0. -1.

fix mass all massflow/mesh mesh inface count once point_at_outlet 0. 0. 0.

Description:

Fix massflow/mesh tracks how many particles penetrate through a mesh surface, as defined by a fix
mesh/surface command. It counts the total number of particles and the associated mass. Only particles part of

group are eligible for counting.

Particles are counted if they cross from the inner side of the mesh to the outer side of the mesh. The outer side
can be defined by using the keyword vec_side, by specifying a point at the outlet side of the mesh (keyword
point_at_outlet). Note that the vector defined by vec_side does not necessarily have to be perpendicular to the
mesh face.

The following restrictions apply in case vec_side is specified: (i) the fix mesh/surface has to be planar, and (ii)
the vector defined by vec_side may not lie inside the mesh plane.

The following restriction applies in case point_at_outlet is used: the count value has to be set to once.

The keyword point_at_outlet is especially useful in case a cylindrically-shaped surface is used. The

fix massflow/mesh command 226

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

point_at_outlet value should be on the cylinder axis in this case. If you like to track particles moving away
from the cylinder axis, specify the point_at_outlet on the axis, and use the keyword inside_out to flip the
direction.

When count = once, then each particle is only counted once, for count = multiple a particle contributes to
number and mass count each time it crosses the mesh face. This can happen e.g. in the case of periodic

boundary conditions or in re-circulating flow conditions.

The diameter, position and velocity of the particles can be written into a file using the file keyword, by
specifying a filename.

If the screen keyword is used, output by this fix to the screen and logfile can be turned on or off as desired.

If the delete_atoms keyword is used then the particles passing through the mesh surface are deleted at the next
re-neighboring step.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files .

This fix computes a per-atom vector (the marker) which can be accessed by various output commands. The
per-atom vector (i.e., the marker) can be accessed by dumps by using "f_massflow_ID", . This fix also
computes a global vector of length 6. This vector can be accessed via "f_ID", where ID is the fix id. The first
vector component is equal to the total mass which has crossed the mesh surface, the second vector component
indicates the particle count. The third vector component is equal to the total mass which has crossed the mesh
surface since the last output divived by the time since the last output (i.e., the mass flow rate), the fourth
vector component indicates the particle count since the last output divived by the time since the last output
(i.e., the number rate of particles). The fifth and sixth vector components are the deleted mass and the number
of deleted particles. This vector can also be accessed by various output commands.

Restrictions:

Currently, this feature does not support multi-sphere particles.

Related commands:

compute nparticles/tracer/region

Default:

count = multiple, inside_out =false, delete_atoms = false

fix massflow/mesh command 227

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix mesh/surface command

fix mesh/surface/planar command

Syntax:

fix ID group-ID mesh/surface file filename premesh_keywords premesh_values mesh_keywords mesh_val
fix ID group-ID mesh/surface/planar file filename premesh_keywords premesh_values mesh_keywords n

e ID, is documented in fix command.

¢ mesh/surface or mesh/surface/planar = style name of this fix command

¢ file = obligatory keyword

¢ filename = name of STL or VTK file containing the triangle mesh data

® zero or more premesh_keywords/premesh_value pairs may be appended

¢ premesh_keyword = type or precision or heal or verbose

¢ type value = atom type (material type) of the wall imported from the STL file precision value = length
mesh nodes this far away at maximum will be recognized as identical (length units) heal value =
auto_remove_duplicates or no verbose value = yes or no zero or more mesh_keywords/mesh_value
pairs may be appended

* mesh_keyword = scale or move or rotate or temperature

scale value = factor
factor = factor to scale the mesh in x-, y—-, and z-direction (double value)
move values = mx my mz
mx my mz = move the mesh by this extent in x-, y-, and z-direction (length units)
rotate values = axis ax ay az angle ang
axis = obligatory keyword
ax, ay, az = axis vector for rotation (length units)

angle = obligatory keyword
ang = angle to rotate the geometry around the specified axis (in degrees)
temperature value = TO
TO = Temperature of the wall (temperature units)
e zero or more surface_keywords/surface_value pairs may be appended

¢ surface_keyword = surface_vel or surface_ang_vel or curvature

surface_vel values = vx Vy Vz
vx vy vz = conveyor belt surface velocity (velocity units)
surface_ang_vel values = origin ox oy o0z axis ax ay az omega om
origin = mandatory keyword
ox oy oz = origin of rotation (length units)
axis = mandatory keyword
ax ay az = axis vector for rotation (length units)

omega = mandatory keyword
om = rotaional velocity around specifyied axis (rad/time units)
curvature value = c
c = maximum angle between mesh faces belonging to the same surface (in degree)

Examples:

fix cad all mesh/surface file mesh.stl type 1
Description:

This fix allows the import of triangual surfeace mesh wall geometry for granular simulations from ASCII STL
files or legacy ASCII VTK files. Style mesh/surface is a general surface mesh, and mesh/surface/planar

fix mesh/surface command 228

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

represents a planar mesh. mesh/surface/planar requires the mesh to consist of only 1 planar face.

Generall, you can apply scaling, offset and rotation to the imported mesh via keywords scale, move, rotate.
Operations are applied in the order as they are specified. The group-ID defines which particles will "see" the
mesh, in case it is used as a granular wall.

One fix represents one wall with a specific material, where the material is identified via keyword type. If
multiple meshes with different materials are desired, the respective meshes must be imported with different
fix mesh/surface commands.

With the temperature keyword, you can define a constant temperature for a mesh in conjunction with heat
conduction via fix _heat/gran. Note that the actual calculation of the heat transfer happens only if you use the
mesh in conjunction with a granular wall, see fix wall/gran.

With the optional surface_vel keyword, you can specify the imported mesh as conveyor belt. The velocity
direction for each mesh face is given by the projection of the conveyor belt velocity parallel to the mesh face,
the velocity magnitude for each mesh face is equal to the conveyor belt velocity. This ensures the model
makes sense also in case the mesh is curved. Likewise, the optional rotation model activated via keyword
surface_ang_vel mimics rotational motion of the mesh (e.g. for modeling a shear cell)

The precision keyword specifies how far away mesh nodes can be at maximum to be recognized as identical.

If LIGGGHTS(R)-PUBLIC stalls because of duplicate elements, you can try setting heal to
auto_remove_duplicates. LIGGGHTS(R)-PUBLIC will then try to heal the geometry by removing duplicate
elements.

IMPORTANT NOTE: You should check the changes to the geometry, e.g. by using a dump mesh/stl
command.

The curvature keyword lets you specify up to which angle between two triangles the triangles should be
treated as belonging to the same surface (e.g. useful for bends). This angle is used to decide if (a) contact
history is copied from one triangle to the other as the contact point proceeds and (b) if edge and corner
interaction is calculated.

Quality checks / error and warning messages:

LIGGGHTS(R)-PUBLIC checks a couple of quality criteria upon loading a mesh. LIGGGHTS(R)-PUBLIC
tries to give you as much information about the issue as possible.

Warning messages:

e There should be no angle < 0.5A° in any element
¢ The number of neighbor elements should be <=5 for any element
¢ All nodes should be within the simlation box

If any of the obove rules is not fulfilled, a warning is generated. Keyword verbose controls if details about
the warning are written to the screen.

Error messages:
® The curvature must not be larger than any angle in any mesh element
® Mesh elements must not be duplicate
¢ Coplanar mesh elements that share an edge must not overlap
® Mesh elements must not leave the simulation domain

fix mesh/surface/planar command 229

LIGGGHTS(R)-PUBLIC Users Manual

If any of the obove rules is not fulfilled, an error is generated and LIGGGHTS(R)-PUBLIC halts. Error
messages are always verbose. If LIGGGHTS(R)-PUBLIC halts due to the last error, you might think about
(a) changing the mesh import parameters (scale, move, rotate), (b) changing the mesh dynamics if a fix
move/mesh is applied or using boundary m m m

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the STL data to binary restart files to be able to correctly resume the simulation in case the
mesh is moved. None of the fix_modify options are relevant to this fix. No global scalar or vector or
per-atom quantities are stored by this fix for access by various output commands. No parameter of this fix
can be used with the start/stop keywords of the run command. This fix is not invoked during energy
minimization.

Restrictions:

To date, only ASCII STL and VTK files can be read (binary is not supported). In the current
implementation, each processor allocates memory for the whole geometry, which may lead to memory
issues for very large geometries . It is not supported to use both the moving mesh and the conveyor belt
feature.

Related commands:

fix wall/gran

Default: curvature = 0.256235 degrees, precision = le-8, verbose = no, heal = no

fix mesh/surface/planar command 230

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix mesh/surface/stress command

Syntax:
fix ID group-ID mesh/surface/stress file filename premesh_keywords premesh_values mesh_keywords n

¢ ID, is documented in fix command, the group-ID is ignored for this command.

¢ mesh/surface/stress = style name of this fix command

¢ file filename premesh_keywords premesh_values mesh_keywords mesh_values surface_keyword
surface_values are documented in fix mesh/surface.

® zero or more stress_keyword/value pairs may be appended

o stress_keyword = stress or wear

stress value = on or off
reference_point values = rx ry rz
rx, ry, rz = coordinates of reference point
wear value = finnie or off
Examples:

fix cad all mesh/surface/stress file mesh.stl type 1 wear finnie
Description:

This fix is identical to fix mesh/surface except for the fact that the pressure and shear force that the particles in
the fix group exert on each triangle of the mesh is evaluated (which costs a bit of performance). Also, the total
force and torque on the particle is calculated (see output info). The per-element forces can be dumped into
VTK format using dump mesh/vtk.

With the optional stress keyword, stress tracking can be turned off is desired. The reference point for
calculating the body torque can be controlled via the referece_point keyword. The optional wear keyword can
activates a simple qualitative wear model (finnie) - for details on the model, see the seperate
/doc/finnie-wear.pdf. The finnie constant k in Eqn. (4.23) has to be specified as follows:

fix id all property/global k_finnie peratomtypepair n_atomtypes value_11 value_12 .. value_21 val

(value_ij=value for the finnie constant between atom type i and j; n_atomtypes is the number
Restart, fix_modify, output, run start/stop, minimize info:
This fix stores a global vector with 6 components for access by various output commands. The first 3
components are equal to the total force on the mesh, the last 3 components store the total torque on the body
exerted by the particles. Other info see fix mesh.
Related commands:
fix mesh/surface fix wall/gran

Default:

stress = on reference_point = 0. 0. 0. wear = off

fix mesh/surface/stress command 231

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix mesh/surface/stress/servo command

Syntax:
fix ID group-ID mesh/surface/stress/servo file filename premesh_keywords premesh_values mesh_keyw

¢ ID, is documented in fix command, the group-ID is ignored for this command.

¢ mesh/surface/stress/servo = style name of this fix command

¢ file filename premesh_keywords premesh_values mesh_keywords mesh_values surface_keyword
surface_values stress_keywords stress_values are documented in fix mesh/surface/stress.

® zero or more servo_keyword/value pairs may be appended servo keywords = com (obligatory) or dim
(obligatory) or ctrlPV (obligatory) or vel_max (obligatory) or kp or ki or kd

com values = x, y, z
X, y, z = coordinates of the center of mass of the body (distance units)
ctrlPV values = force or torque

force = use force as controll process value, i.e. control force
torque = use torque as controll process value, i.e. control torque
axis args = Xy z
X y z = vector direction to apply the controlled mesh motion
X Oor y or z can be a variable (see below)
target_val values = val
val = target value for the controller (force units or torque units, depending on ctrlP
vel max values = Vv
v = maximum velocity magnitude for servo wall (velocity units)
kp values = k
k = proportional constant for PID controller
ki values = k
k = integral constant for PID controller
kd values = k
k = differential constant for PID controller

mode values = auto
auto = use alternative controller algorithm
ratio values = dr
dr = constant for the alternative controller approach (mode = auto)
Examples:

fix servo all mesh/surface/stress/servo file plate.stl type 1 com 0. 0. 0. ctrlPV force axis 0. O
fix servo all mesh/surface/stress/servo file stirrer.stl type 1 com 0. 0. 0. ctrlPV torque axis O

Description:

This fix implements the functionality of fix mesh/surface/stress but it additionally assumes the mesh being a
servo wall that compacts a particle packing until either a total force (for ctrIPV = force) or a total torque (for
ctrlPV = torque) is acting on the mesh. The target value is defined via keyword target_val. The servo can act
in any dimension (as specified by the axis keyword). Only the direction of the axis is important; it's length is
ignored. A negative value for target_val leads to a wall motion towards negative axis-direction and vice versa.
The user has to specify the center of mass (keyword com) and the maximum velocity allowed for the servo
wall by keyword vel_max. Note that vel_max < skin /(2* timestep) is required.

The controller itself is a proportional-integral-derivative (PID) controller which is controlled by 3 constants
kp, ki, kd:

output = kp * error + ki * errorsum + kd * errorchange

fix mesh/surface/stress/servo command 232

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

where 'error' is the current deviation of the controll process value to the target value, 'errorsum' is the time
integration (sum) of the error values and 'errorchange' its derivative. The controller also includes an
"anti-wind-up scheme" which prohibits accumulation of erroneous controller output caused by the integral
part due to unavoidable long-lasting deviations.

By using the keyword mode = auto an alternative controller approach is applied. It is a pure proportional
controller with gain scheduling. In the absence of neighbour particles the servo wall may move with
maximum velocity (defined by vel_max). Otherwise, the maximum wall velocity is defined by ratio *
min(radius) / dt. Approaching target_val the maximum velocity decreases to 0.1 * ratio * min(radius) / dt.

Restart, fix_modify, output, run start/stop, minimize info:

This fix stores a global vector with 9 components for access by various output commands. The first 3
components are equal to the total force on the mesh, the next 3 components store the total torque on the mesh.
The last 3 components output the wall position. Furthermore, this fix writes the state of the servo wall to
binary restart files so that a simulation can continue correctly. This fix supports fix_modify with option
integrate = 'start' or 'stop' to start or stop the servo wall integration inbetween two runs. This fix also supports
fix_modify with option target_val = val to change the target value inbetween two runs. This fix also supports
fix_modify with option ctriParam = kp ki kd to change the controller params inbetween two runs.
Restrictions:

When using this fix, along with scaling or rotate the body, all the servo_keyword/value pairs have to represent
the state after scaling/rotation. Mesh elements may not be deleted in case due to leaving the simulation box for
a fixed boundary. In this case, an error is generated. See boundary command for details. This fix can not be
used in conjunction with another fix that manipulates mesh geometry, such as a fix move/mesh

Related commands:

fix mesh/surface/stress, fix wall/gran

Default:

kp=1e-2,ki=0,kd=0

fix mesh/surface/stress/servo command 233

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix_modify command

Syntax:
fix_modify fix-ID keyword value ...

¢ fix-ID = ID of the fix to modify
¢ one or more keyword/value pairs may be appended
¢ keyword = temp or press or energy

temp value = compute ID that calculates a temperature
press value = compute ID that calculates a pressure
energy value = yes or no

Examples:

fix_modify 3 temp myTemp press myPress
fix_modify 1 energy yes

Description:

Modify one or more parameters of a previously defined fix. Only specific fix styles support specific
parameters. See the doc pages for individual fix commands for info on which ones support which fix_modify
parameters.

The temp keyword is used to determine how a fix computes temperature. The specified compute ID must have
been previously defined by the user via the compute command and it must be a style of compute that
calculates a temperature. All fixes that compute temperatures define their own compute by default, as
described in their documentation. Thus this option allows the user to override the default method for
computing T.

The press keyword is used to determine how a fix computes pressure. The specified compute ID must have
been previously defined by the user via the compute command and it must be a style of compute that
calculates a pressure. All fixes that compute pressures define their own compute by default, as described in
their documentation. Thus this option allows the user to override the default method for computing P.

For fixes that calculate a contribution to the potential energy of the system, the energy keyword will include
that contribution in thermodynamic output of potential energy. See the thermo_style command for info on
how potential energy is output. The contribution by itself can be printed by using the keyword f_ID in the
thermo_style custom command, where ID is the fix-ID of the appropriate fix. Note that you must use this
setting for a fix if you are using it when performing an energy minimization and if you want the energy and
forces it produces to be part of the optimization criteria.

Restrictions: none

Related commands:

fix, compute temp, compute pressure, thermo_style

Default:

The option defaults are temp = ID defined by fix, press = ID defined by fix, energy = no.

fix_modify command 234

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix momentum command

Syntax:
fix ID group-ID momentum N keyword values

¢ ID, group-ID are documented in fix command

® momentum = style name of this fix command

¢ N = adjust the momentum every this many timesteps one or more keyword/value pairs may be
appended

¢ keyword = linear or angular

linear values = xflag yflag zflag
xflag,yflag,zflag = 0/1 to exclude/include each dimension
angular values = none

Examples:

fix 1 all momentum 1 linear 1 1 O
fix 1 all momentum 100 linear 1 1 1 angular

Description:

Zero the linear and/or angular momentum of the group of atoms every N timesteps by adjusting the velocities
of the atoms. One (or both) of the linear or angular keywords must be specified.

If the linear keyword is used, the linear momentum is zeroed by subtracting the center-of-mass velocity of the
group from each atom. This does not change the relative velocity of any pair of atoms. One or more

dimensions can be excluded from this operation by setting the corresponding flag to 0.

If the angular keyword is used, the angular momentum is zeroed by subtracting a rotational component from
each atom.

This command can be used to insure the entire collection of atoms (or a subset of them) does not drift or rotate
during the simulation due to random perturbations (e.g. fix langevin thermostatting).

Note that the velocity command can be used to create initial velocities with zero aggregate linear and/or
angular momentum.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions: none
Related commands:

fix recenter, velocity

fix momentum command 235

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Default: none

fix momentum command 236

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix move command

Syntax:
fix ID group-ID move style args keyword values

¢ ID, group-ID are documented in fix command
® move = style name of this fix command
e style = linear or wiggle or rotate or variable

linear args = Vx Vy Vz

Vx,Vy,Vz = components of velocity vector (velocity units), any component can be specif
wiggle args = Ax Ay Az period
Ax,Ay,Az = components of amplitude vector (distance units), any component can be speci

period = period of oscillation (time units)
rotate args = Px Py Pz Rx Ry Rz period

Px,Py,Pz = origin point of axis of rotation (distance units)
Rx,Ry,Rz = axis of rotation vector
period = period of rotation (time units)
variable args = v_dx v_dy v_dz v_vx V_Vy V_vz
v_dx,v_dy,v_dz = 3 variable names that calculate x,y,z displacement as function of tim
V_VX,v_vy,v_vz = 3 variable names that calculate x,y,z velocity as function of time, a

e zero or more keyword/value pairs may be appended
¢ keyword = units

units value = box or lattice

Examples:
fix 1 boundary move wiggle 3.0 0.0 0.0 1.0 units box
fix 2 boundary move rotate 0.0 0.0 0.0 0.0 0.0 1.0 5.0

fix 2 boundary move variable v_myx v_myy NULL v_VX v_VY NULL
Description:

Perform updates of position and velocity for atoms in the group each timestep using the specified settings or
formulas, without regard to forces on the atoms. This can be useful for boundary or other atoms, whose
movement can influence nearby atoms.

IMPORTANT NOTE: The atoms affected by this fix should not normally be time integrated by other fixes
(e.g. fix nve, fix nvt), since that will change their positions and velocities twice.

IMPORTANT NOTE: As atoms move due to this fix, they will pass thru periodic boundaries and be
remapped to the other side of the simulation box, just as they would during normal time integration (e.g. via
the fix nve command). It is up to you to decide whether periodic boundaries are appropriate with the kind of
atom motion you are prescribing with this fix.

IMPORTANT NOTE: As dicsussed below, atoms are moved relative to their initial position at the time the fix
is specified. These initial coordinates are stored by the fix in "unwrapped" form, by using the image flags
associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See
the Atoms section of the read data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this fix by using the set image command.

fix move command 237

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The linear style moves atoms at a constant velocity, so that their position X = (x,y,z) as a function of time is
given in vector notation as

X(t) = X0 + V * delta

where X0 = (x0,y0,z0) is their position at the time the fix is specified, V is the specified velocity vector with
components (Vx,Vy,Vz), and delta is the time elapsed since the fix was specified. This style also sets the
velocity of each atom to V = (Vx,Vy,Vz). If any of the velocity components is specified as NULL, then the
position and velocity of that component is time integrated the same as the fix nve command would perform,
using the corresponding force component on the atom.

Note that the linear style is identical to using the variable style with an equal-style variable that uses the
vdisplace() function. E.g.

variable V equal 10.0
variable x equal vdisplace (0.0, $V)
fix 1 boundary move variable v_x NULL NULL v_V NULL NULL

The wiggle style moves atoms in an oscillatory fashion, so that their position X = (x,y,z) as a function of time
is given in vector notation as

X(t) = X0 + A sin(omega*delta)

where X0 = (x0,y0,z0) is their position at the time the fix is specified, A is the specified amplitude vector with
components (Ax,Ay,Az), omega is 2 Pl / period, and delta is the time elapsed since the fix was specified. This
style also sets the velocity of each atom to the time derivative of this expression. If any of the amplitude
components is specified as NULL, then the position and velocity of that component is time integrated the
same as the fix nve command would perform, using the corresponding force component on the atom.

Note that the wiggle style is identical to using the variable style with equal-style variables that use the
swiggle() and cwiggle() functions. E.g.

variable A equal 10.0

variable T equal 5.0

variable omega equal 2.0*PI/ST

variable x equal swiggle (0.0, $A,ST)

variable v equal v_omega* ($SA-cwiggle (0.0,$A,S$T))

fix 1 boundary move variable v_x NULL NULL v_v NULL NULL

The rotate style rotates atoms around a rotation axis R = (Rx,Ry,Rz) that goes thru a point P = (Px,Py,Pz).
The period of the rotation is also specified. This style also sets the velocity of each atom to (omega cross
Rperp) where omega is its angular velocity around the rotation axis and Rperp is a perpendicular vector from
the rotation axis to the atom. If the defined atom_style assigns an angular velocity to each atom, then each
atom's angular velocity is also set to omega. Note that the direction of rotation for the atoms around the
rotation axis is consistent with the right-hand rule: if your right-hand's thumb points along R, then your fingers
wrap around the axis in the direction of rotation.

The variable style allows the position and velocity components of each atom to be set by formulas specified
via the yariable command. Each of the 6 variables is specified as an argument to the fix as v_name, where
name is the variable name that is defined elsewhere in the input script.

Each variable must be of either the equal or atom style. Equal-style variables compute a single numeric
quantity, that can be a function of the timestep as well as of other simulation values. Atom-style variables
compute a numeric quantity for each atom, that can be a function per-atom quantities, such as the atom's
position, as well as of the timestep and other simulation values. Note that this fix stores the original
coordinates of each atom (see note below) so that per-atom quantity can be used in an atom-style variable

fix move command 238

LIGGGHTS(R)-PUBLIC Users Manual

formula. See the variable command for details.

The first 3 variables (v_dx,v_dy,v_dz) specified for the variable style are used to calculate a displacement
from the atom's original position at the time the fix was specified. The second 3 variables (v_vx,v_vy,v_vz)
specified are used to compute a velocity for each atom.

Any of the 6 variables can be specified as NULL. If both the displacement and velocity variables for a
particular x,y,z component are specified as NULL, then the position and velocity of that component is time
integrated the same as the fix nve command would perform, using the corresponding force component on the
atom. If only the velocity variable for a component is specified as NULL, then the displacement variable will
be used to set the position of the atom, and its velocity component will not be changed. If only the
displacement variable for a component is specified as NULL, then the velocity variable will be used to set the
velocity of the atom, and the position of the atom will be time integrated using that velocity.

The units keyword determines the meaning of the distance units used to define the linear velocity and wiggle
amplitude and rotate origin. This setting is ignored for the variable style. A box value selects standard units as
defined by the units command, e.g. velocity in Angstroms/fmsec and amplitude and position in Angstroms for
units = real. A lattice value means the velocity units are in lattice spacings per time and the amplitude and
position are in lattice spacings. The lattice command must have been previously used to define the lattice
spacing. Each of these 3 quantities may be dependent on the x,y,z dimension, since the lattice spacings can be
different in x,y,z.

For tRESPA time integration, this fix adjusts the position and velocity of atoms on the outermost rRESPA
level.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of moving atoms to binary restart files, as well as the initial timestep,
so that the motion can be continuous in a restarted simulation. See the read restart command for info on how
to re-specify a fix in an input script that reads a restart file, so that the operation of the fix continues in an
uninterrupted fashion.

IMPORTANNT NOTE: Because the move positions are a function of the current timestep and the initial
timestep, you cannot reset the timestep to a different value after reading a restart file, if you expect a fix move
command to work in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

This fix produces a per-atom array which can be accessed by various output commands. The number of
columns for each atom is 3, and the columns store the original unwrapped X,y,z coords of each atom. The

per-atom values can be accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

fix nve, displace atoms

Default: none

The option default is units = lattice.

fix move command 239

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix move/mesh command

Syntax:
fix ID group-ID move/mesh mesh mesh-ID style args keyword values

¢ ID is documented in fix command, group-ID is ignored

¢ move/mesh = style name of this fix command

¢ mesh = obligatory keyword

¢ mesh-ID = ID for the fix mesh that the fix move/mesh is applied to

e style = linear or linear/variable or wiggle or riggle or rotate or rotate/variable or viblin or vibrot

linear args = Vx Vy Vz

Vx,Vy,Vz = components of velocity vector (velocity units)
linear/variable args = var_Vx var_Vy var_Vz
var_Vx,var_Vy,var_Vz = variables specifying components of velocity vector (velocity un

wiggle args = amplitude Ax Ay Az period per
amplitude = obligatory keyword
Ax,Ay,Az = components of amplitude vector (distance units)
period = obligatory keyword
per = period of oscillation (time units)

riggle args = origin Px Py Pz axis ax ay az period per amplitude ampl
origin = obligatory keyword
Px,Py,Pz = origin point of axis of rotation (distance units)
axis = obligatory keyword
ax,ay,az = axis of rotation vector (distance units)

period = obligatory keyword
per = period of rotation (time units)#
amplitude = obligatory keyword
ampl = amplitude of riggle movement (grad)
rotate args = origin Px Py Pz axis ax ay az period per
origin = obligatory keyword
Px,Py,Pz = origin point of axis of rotation (distance units)
ax,ay,az = axis of rotation vector (distance units)
period = obligatory keyword
per = period of rotation (time units)
rotate/variable args = origin Px Py Pz axis ax ay az omega var_omega
origin = obligatory keyword
Px,Py,Pz = origin point of axis of rotation (distance units)
ax,ay,az = axis of rotation vector (distance units)
omega = obligatory keyword
var_omega = variable specifying angular velocity (rad / time units)

viblin args = axis ax ay az order n amplitude Cl ... Cn phase pl ... pn period per
axis = obligatory keyword
ax,ay,az = components of moving direction vector (distance units) (origin 0 0 0)

order= obligatory keyword
n= order of trigonometric series n (from 1 to 10)
amplitude = obligatory keyword

Cl, ..., Cn = amplitude (distance units)
phase = obligatory keyword
pl, ...,pn = phase of functionterm (rad) (number of terms is equivalent to order n)

period = obligatory keyword
per = period of rotation (time units)

vibrot args = origin Px Py Pz axis ax ay az order n amplitude Cl ... Cn phase pl ... pn
origin = obligatory keyword
Px,Py,Pz = origin point of axis of rotation (distance units)
axis = obligatory keyword
ax,ay,az = axis of rotation vector

order= obligatory keyword
n= order of trigonometric series (from 1 to 10)

fix move/mesh command 240

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

amplitude = obligatory keyword

Cl, ..., Cn = amplitude (rad)
phase = obligatory keyword
pl, ...,pn = phase of functionterm (rad) (number of terms is equivalent to order n)

period = obligatory keyword
per = period of rotation (time units)

Examples:

fix move all move/mesh mesh cadl wiggle amplitude -0.1 0. 0. period 0.02

fix move all move/mesh mesh cadl rotate origin 0. 0. 0. axis 0. 0. 1. period 0.05

fix move all move/mesh mesh cadl linear 5. 5. O.

fix move all move/mesh mesh cadl viblin axis 0. 0. 1 order 5 amplitude 0.4 0.1 0.3 0.1 0.1 phase
fix move all move/mesh mesh cadl vibrot origin 0. 0. 0 axis 0. 0. 1 order 2 amplitude 0.4 0.1 ph

Description:

Perform updates of position and velocity for mesh elements which are part of the fix_mesh surface with ID
mesh-1D using the specified settings or formulas. The fix group is ignored for this command.

The linear style moves mesh elements at a constant velocity, so that their position X = (x,y,z) as a function of
time is given in vector notation as

X(t) = X0 + V * delta

where X0 = (x0,y0,z0) is their position at the time the fix is specified, V is the specified velocity vector with
components (Vx,Vy,Vz), and delta is the time elapsed since the fix was specified. This style also sets the
velocity of each atom to V = (Vx,Vy,Vz).

The linear/variable style does the same as the linear style, but uses three variables so that the velocity can be
time-dependant.

The wiggle style moves atoms in an oscillatory fashion, so that their position X = (x,y,z) as a function of time
is given in vector notation as

X(t) = X0 + A sin(omega*delta)

where X0 = (x0,y0,z0) is their position at the time the fix is specified, A is the specified amplitude vector with
components (Ax,Ay,Az), omega is 2 Pl / period, and delta is the time elapsed since the fix was specified. This
style also sets the velocity of each element to the time derivative of this expression.

The rotate style rotates around a rotation axis R = (Rx,Ry,Rz) that goes thru a point P = (Px,Py,Pz). The
period of the rotation is also specified. This style also sets the velocity of each element to (omega cross
Rperp) where omega is its angular velocity around the rotation axis and Rperp is a perpendicular vector from
the rotation axis to the atom. Note that the direction of rotation around the rotation axis is consistent with the
right-hand rule: if your right-hand's thumb points along R, then your fingers wrap around the axis in the
direction of rotation.

The rotate/variable style does the same as the rotate style, but uses a variable for the angular velocity so that
the angular velocity can be time-dependant. IMPORTANT NOTE: style rotate takes the period of the rotation
as input, rotate/variable takes angular velocity as input.

The riggle style imposes an oscillatory rotation around a rotation axis R = (Rx,Ry,Rz) that goes thru a point P

= (Px,Py,Pz). The period of the oscillation is specified as well as the amplitude in grad (A°). This style also
sets the velocity of each element accordingly.

fix move/mesh command 241

LIGGGHTS(R)-PUBLIC Users Manual

The viblin style moves meshes in an oscillatory fashion with an vibration function of higher order, so that
their position X = (x,y,z) as a function of time is given in vector notation as

k
X(t)=Xo+ D> C,-cos(n-omega- delta + phase,)

n=1

where X0 = (x0,y0,z0) is their position at the time the fix is specified, n represents the order of the
trigonometric series, Cn is the specified amplitude along the direction given by axis = (ax,ay,az). The vector D
is the unit vector of axis. The angular velocity omega is 2 P1/ period, and delta is the time elapsed since the
fix was specified. This style also sets the velocity of each element to the time derivative of this expression.

The vibrot style generates an oscillatory rotation around a rotation axis = (ax,ay,az) that goes thru a point
origin = (Px,Py,Pz). The period of the oscillation is used to calculate omega, the amplitudes Cr and the phase
phase n are given in rad. The change of rotation angle per time gamma(t) is described by trigonometric series
of order n. The formula for this change is

k
gamma(t) =Y C, - cos(n - omega - delta + phase,,)
n=1
This style also sets the velocity of each element accordingly
NOTE: If a dangerous tri neighbor list build is detected, this may be due to the fact that the geometry is
moved too close to a region where particle insertion is taking place so that initial interpenetration happens

when the particles are inserted.

NOTE: When moving a mesh element, not only the node positions are moved but also a couple of other
vectors. So moving one mesh element is more costly as one particle.

Superposition of multiple fix move/mesh commands:

It is possible to superpose multiple fix move/mesh commands. In this case, the reference frame for the second
move command moves along as the mesh is moved by the first move command etc. E.g. for style rotate, the
origin of the rotation axis would be in local reference frame.

Example: A mesh should rotate around a central axis and additionally revolve around its center of mass. The
first move command should be the rotation around the central axis, the second move command the revolution
around the center of mass of the mesh.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of moving elements to binary restart files, so that the motion can be
continuous in a restarted simulation. See the read restart command for info on how to re-specify a fix in an
input script that reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions:

fix move/mesh command 242

LIGGGHTS(R)-PUBLIC Users Manual

If multiple fix move/mesh movements are superposed onto one mesh, they have to be deleted in reverse order
of their creation Mesh elements may not be deleted in case due to leaving the simulation box for a fixed
boundary. In this case, an error is generated. See boundary command for details.

Related commands:

fix mesh/surface

Default: none

fix move/mesh command 243

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix nve/asphere command

Syntax:
fix ID group-ID nve/asphere

¢ ID, group-ID are documented in fix command
¢ nve/asphere = style name of this fix command

Examples:

fix 1 all nve/asphere

Description:

Perform constant NVE integration to update position, velocity, orientation, and angular velocity for aspherical
particles in the group each timestep. V is volume; E is energy. This creates a system trajectory consistent with

the microcanonical ensemble.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with that
package. See the Making LIGGGHTS(R)-PUBLIC section for more info.

This fix requires that atoms store torque and angular momementum and a quaternion as defined by the
atom_style ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

fix nve, fix nve/sphere

Default: none

fix nve/asphere command 244

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix nve/asphere/noforce command
Syntax:
fix ID group-ID nve/asphere/noforce

¢ ID, group-ID are documented in fix command
¢ nve/asphere/noforce = style name of this fix command

Examples:

fix 1 all nve/asphere/noforce

Description:

Perform updates of position and orientation, but not velocity or angular momentum for atoms in the group
each timestep. In other words, the force and torque on the atoms is ignored and their velocity and angular

momentum are not updated. The atom velocities and angularm momenta are used to update their positions and
orientation.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with that
package. See the Making LIGGGHTS(R)-PUBLIC section for more info.

This fix requires that atoms store torque and angular momementum and a quaternion as defined by the
atom_style ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:
fix nve/noforce, fix nve/asphere

Default: none

fix nve/asphere/noforce command 245

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix nve command
Syntax:
fix ID group-ID nve

¢ ID, group-ID are documented in fix command
¢ nve = style name of this fix command

Examples:
fix 1 all nve
Description:

Perform constant NVE integration to update position and velocity for atoms in the group each timestep. V is
volume; E is energy. This creates a system trajectory consistent with the microcanonical ensemble.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions: none
Related commands: none

Default: none

fix nve command 246

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix nve/limit command

Syntax:
fix ID group-ID nve/limit limitstyle xmax

¢ ID, group-ID are documented in fix command

¢ nve/limit = style name of this fix command

¢ limitstyle = absolute or radius_ratio

¢ xmax = maximum distance an atom can move in one timestep (distance units or relative to atom
radius)

Examples:
fix 1 all nve/limit absolute 0.1
Description:

Perform constant NVE updates of position and velocity for atoms in the group each timestep. A limit is
imposed on the maximum distance an atom can move in one timestep. This is useful when starting a
simulation with a configuration containing highly overlapped atoms. Normally this would generate huge
forces which would blow atoms out of the simulation box, causing LIGGGHTS(R)-PUBLIC to stop with an
error.

Using this fix can overcome that problem. Forces on atoms must still be computable (which typically means 2
atoms must have a separation distance > 0.0). But large velocities generated by large forces are reset to a
value that corresponds to a displacement of length xmax in a single timestep. Xmax is specified in distance
units; see the units command for details. The value of xmax should be consistent with the neighbor skin
distance and the frequency of neighbor list re-building, so that pairwise interactions are not missed on
successive timesteps as atoms move. See the neighbor and neigh modify commands for details.

If limitstyle absolute is used, xmax is applied directly. If limitstyle radius_ratio is used, a maxmimum
distance per step of xmax*radius is applied for each atom. This can be useful for the simulation of
poly-disperse systems. Note that this option requires the atom radius to be stored by using an appropriate atom
style.

Note that if a velocity reset occurs the integrator will not conserve energy. On steps where no velocity resets
occur, this integrator is exactly like the fix nve command. Since forces are unaltered, pressures computed by
thermodynamic output will still be very large for overlapped configurations.

IMPORTANT NOTE: You should not use fix shake in conjunction with this fix. That is because fix shake
applies contraint forces based on the predicted postitions of atoms after the next timestep. It has no way of
knowing the timestep may change due to this fix, which will cause the constraint forces to be invalid. A better
strategy is to turn off fix shake when performing initial dynamics that need this fix, then turn fix shake on
when doing normal dynamics with a fixed-size timestep.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

fix nve/limit command 247

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

This fix computes a global scalar which can be accessed by various output commands. The scalar is the count
of how many updates of atom's velocity/position were limited by the maximum distance criterion. This should
be roughly the number of atoms so affected, except that updates occur at both the beginning and end of a
timestep in a velocity Verlet timestepping algorithm. This is a cumulative quantity for the current run, but is
re-initialized to zero each time a run is performed. The scalar value calculated by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:

fix nve, fix nve/noforce, pair_style soft

Default: none

fix nve/limit command 248

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix nve/line command

Syntax:

fix ID group-ID nve/line

¢ ID, group-ID are documented in fix command
¢ nve/line = style name of this fix command

Examples:

fix 1 all nve/line

Description:

Perform constant NVE integration to update position, velocity, orientation, and angular velocity for line
segment particles in the group each timestep. V is volume; E is energy. This creates a system trajectory

consistent with the microcanonical ensemble. See Section_howto 14 of the manual for an overview of using
line segment particles.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions:

This fix is part of the ASPHERE package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with that
package. See the Making LIGGGHTS(R)-PUBLIC section for more info.

This fix requires that particles be line segments as defined by the atom_style line command.

Related commands:

fix nve, fix nve/asphere

Default: none

fix nve/line command 249

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix nve/noforce command
Syntax:
fix ID group-ID nve

¢ ID, group-ID are documented in fix command
¢ nve/noforce = style name of this fix command

Examples:

fix 3 wall nve/noforce

Description:

Perform updates of position, but not velocity for atoms in the group each timestep. In other words, the force
on the atoms is ignored and their velocity is not updated. The atom velocities are used to update their

positions.

This can be useful for wall atoms, when you set their velocities, and want the wall to move (or stay stationary)
in a prescribed fashion.

This can also be accomplished via the fix setforce command, but with fix nve/noforce, the forces on the wall
atoms are unchanged, and can thus be printed by the dump command or queried with an equal-style variable
that uses the fcm() group function to compute the total force on the group of atoms.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions: none

Related commands:

fix nve

Default: none

fix nve/noforce command 250

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix nve/sphere command

Syntax:
fix ID group-ID nve/sphere

¢ ID, group-ID are documented in fix command

¢ nve/sphere = style name of this fix command

¢ zero or more keyword/value pairs may be appended
¢ keyword = update

update value = dipole
dipole = update orientation of dipole moment during integration

Examples:

fix 1 all nve/sphere
fix 1 all nve/sphere update dipole

Description:
Perform constant NVE integration to update position, velocity, and angular velocity for finite-size spherical
particles in the group each timestep. V is volume; E is energy. This creates a system trajectory consistent with

the microcanonical ensemble.

This fix differs from the fix nve command, which assumes point particles and only updates their position and
velocity.

If the update keyword is used with the dipole value, then the orientation of the dipole moment of each particle
is also updated during the time integration. This option should be used for models where a dipole moment is
assigned to particles via use of the atom_style dipole command.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix _modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the
atom_style sphere command. If the dipole keyword is used, then they must also store a dipole moment as
defined by the atom_style dipole command.

All particles in the group must be finite-size spheres. They cannot be point particles.

Related commands:

fix nve, fix nve/asphere

Default: none

fix nve/sphere command 251

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix particledistribution/discrete command

Syntax:
fix ID group-ID particledistribution/discrete seed ntemp t_id t_m ...

¢ ID, group-ID are documented in fix command

e particledistribution/discrete = style name of this fix command

¢ seed = random number generator seed (integer value)

e ntemp = number of particle templates to be used in this command

® zero or more ¢_id/t_m pairs are appended, number of pairs must match ntemp

t_id = id of a fix of type particletemplate/sphere

o

t_m = mass % for this template in the distribution
Examples:

fix pddl all particledistribution/discrete 6778 1 ptsl 1.0
fix pddl all particledistribution/discrete 1239 2 ptsl 0.3 pts2 0.7

Description:

Define a discrete particle distribution that defines a discrete particle distribution to be inserted by the
fix_pour dev command. It takes several templates of type fix_particletemplate sphere as inputs, which define
the properties of the single particles that are part of the distribution.

At insertion, particles are chosen according to the mass-% distribution as defined by each pair (t_id, t_m).
Note that the sum of all weights t_m must be equal to 1.0, if this is not the case the user is warned at the
distribution is normalized. Note that large particles are inserted first, so that a higher volume fraction can be
achieved. If not all desired insertions could be performed, it is likely that the distribution is not accurately
reproduced.

IMPORTANT NOTE: As opposed to the number-based distributions used by fix_pour and fix_pour legacy,
this fix uses the more common distribution based on mass-% as input (as does fix_particletemplate sphere).

Restart, fix_modify, output, run start/stop, minimize info:
Information about the random state in this fix is written to binary restart files so you can restart a simulation
with the same particles being chosen for insertion. None of the fix_modify options are relevant to this fix. No

global scalar or vector or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.
Restrictions: none
Related commands:

fix_pour dev

Default: none

fix particledistribution/discrete command 252

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix particletemplate/sphere command

Syntax:
fix ID group-ID particletemplate/sphere seed keyword values

¢ ID, group-ID are documented in fix command

e particletemplate/sphere = style name of this fix command
¢ seed = random number generator seed (integer value)

¢ n_spheres = number of spheres in the template

¢ zero or more keyword/value pairs can be appended

¢ keyword = atom_type or density or volume_limit or radius

atom _type value = atom type assigned to this particle template
density values = random_style paraml (param2)
random_style = 'constant' or 'uniform' or 'gaussian'
paraml = density for 'constant', low value of density for 'uniform', expectancy value fo
param2 = omitted for 'constant', high value of density for 'uniform', sigma value for
volume_limit value = lowest particle volume allowed in simulation
radius values = random_style paraml (param2)
random_style = 'constant' or 'uniform number' or 'uniform mass' or 'gaussian number'
paraml = radius for 'constant', low value of radius for 'uniform', mu value for 'gaussia
param2 = omitted for 'constant', high value of radius for 'uniform', sigma value for 'ga
Examples:

fix ptsl all particletemplate/sphere 1 atom_type 1 density constant 2500 radius constant 0.0015
Description:

Define a particle that is used as input for a fix_particledistribution discrete command. You can choose the
atom type, density and radius of the particles. For density and radius, you can choose between 'constant’,
'uniform' and 'gaussian' random styles. Note that for radius, you can additionally choose between a
number-based and mass-based uniform distribution, where the latter is used more frequently typically.
'gaussian' for radius only supports a number-based distribution.

It is thus possible to define a uniform or gaussian distribution on top of the discrete distribution defined by
fix_particledistribution discrete.

IMPORTANT NOTE: As opposed to the number-based distributions, this fix uses the more common
distribution based on mass-% for the radius distribution (as does fix_particledistribution discrete).

LIGGGHTS(R)-PUBLIC will throw an error if the particle volume is too small compared to machine
precision. If you are sure you know what you are doing you can override the default limit of 1e-12.

Restart, fix_modify, output, run start/stop, minimize info:

Information about the random state in this fix is written to binary restart files so you can restart a simulation
with the same particles being chosen for insertion. None of the fix_modify options are relevant to this fix. No
global scalar or vector or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.

fix particletemplate/sphere command 253

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Restrictions: none

Related commands:

fix_particletemplate sphere

Default: radius = 1.0, density = 1.0, atom_type = 1, volume_limit = le-12

fix particletemplate/sphere command 254

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix planeforce command

Syntax:

fix ID group-ID planeforce x y z
¢ ID, group-ID are documented in fix command
¢ lineforce = style name of this fix command

¢ x y z = 3-vector that is normal to the plane

Examples:

fix hold boundary planeforce 1.0 0.0 0.0

Description:

Adjust the forces on each atom in the group so that only the components of force in the plane specified by the
normal vector (x,y,z) remain. This is done by subtracting out the component of force perpendicular to the

plane.

If the initial velocity of the atom is 0.0 (or in the plane), then it should continue to move in the plane
thereafter.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.
Restrictions: none

Related commands:

fix lineforce

Default: none

fix planeforce command 255

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix poems
Syntax:
fix ID group-ID poems keyword values
¢ ID, group-ID are documented in fix command

¢ poems = style name of this fix command
¢ keyword = group or file or molecule

group values = list of group IDs
molecule values = none
file values = filename
Examples:

fix 3 fluid poems group clumpl clump2 clump3
fix 3 fluid poems file cluster.list

Description:

Treats one or more sets of atoms as coupled rigid bodies. This means that each timestep the total force and
torque on each rigid body is computed and the coordinates and velocities of the atoms are updated so that the
collection of bodies move as a coupled set. This can be useful for treating a large biomolecule as a collection
of connected, coarse-grained particles.

The coupling, associated motion constraints, and time integration is performed by the software package

Parallelizable Open source Efficient Multibody Software (POEMS) which computes the constrained
rigid-body motion of articulated (jointed) multibody systems (Anderson). POEMS was written and is

distributed by Prof Kurt Anderson, his graduate student Rudranarayan Mukherjee, and other members of his
group at Rensselaer Polytechnic Institute (RPI). Rudranarayan developed the
LIGGGHTS(R)-PUBLIC/POEMS interface. For copyright information on POEMS and other details, please
refer to the documents in the poems directory distributed with LIGGGHTS(R)-PUBLIC.

This fix updates the positions and velocities of the rigid atoms with a constant-energy time integration, so you
should not update the same atoms via other fixes (e.g. nve, nvt, npt, temp/rescale, langevin).

Each body must have a non-degenerate inertia tensor, which means if must contain at least 3 non-collinear
atoms. Which atoms are in which bodies can be defined via several options.

For option group, each of the listed groups is treated as a rigid body. Note that only atoms that are also in the
fix group are included in each rigid body.

For option molecule, each set of atoms in the group with a different molecule ID is treated as a rigid body.

For option file, sets of atoms are read from the specified file and each set is treated as a rigid body. Each line
of the file specifies a rigid body in the following format:

ID type atom1-ID atom2-ID atom3-ID ...

ID as an integer from 1 to M (the number of rigid bodies). Type is any integer; it is not used by the fix poems
command. The remaining arguments are IDs of atoms in the rigid body, each typically from 1 to N (the

fix poems 256

http://www.cfdem.com
http://www.rpi.edu/~anderk5/lab

LIGGGHTS(R)-PUBLIC Users Manual

number of atoms in the system). Only atoms that are also in the fix group are included in each rigid body.
Blank lines and lines that begin with '# are skipped.

A connection between a pair of rigid bodies is inferred if one atom is common to both bodies. The POEMS
solver treats that atom as a spherical joint with 3 degrees of freedom. Currently, a collection of bodies can
only be connected by joints as a linear chain. The entire collection of rigid bodies can represent one or more
chains. Other connection topologies (tree, ring) are not allowed, but will be added later. Note that if no joints
exist, it is more efficient to use the fix rigid command to simulate the system.

When the poems fix is defined, it will print out statistics on the total # of clusters, bodies, joints, atoms
involved. A cluster in this context means a set of rigid bodies connected by joints.

For computational efficiency, you should turn off pairwise and bond interactions within each rigid body, as
they no longer contribute to the motion. The "neigh_modify exclude" and "delete_bonds" commands can be
used to do this if each rigid body is a group.

For computational efficiency, you should only define one fix poems which includes all the desired rigid
bodies. LIGGGHTS(R)-PUBLIC will allow multiple poems fixes to be defined, but it is more expensive.

The degrees-of-freedom removed by coupled rigid bodies are accounted for in temperature and pressure
computations. Similarly, the rigid body contribution to the pressure virial is also accounted for. The latter is
only correct if forces within the bodies have been turned off, and there is only a single fix poems defined.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files. None of the fix_modify options are relevant to

this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.

Restrictions:

This fix is part of the POEMS package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with that
package, which also requires the POEMS library be built and linked with LIGGGHTS(R)-PUBLIC. See the

Making LIGGGHTS(R)-PUBLIC section for more info.

Related commands:
fix rigid, delete bonds, neigh modify exclude

Default: none

(Anderson) Anderson, Mukherjee, Critchley, Ziegler, and Lipton "POEMS: Parallelizable Open-source
Efficient Multibody Software ", Engineering With Computers (2006). (link to paper)

fix poems 257

http://dx.doi.org/10.1007/s00366-006-0026-x

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix print command

Syntax:
fix ID group-ID print N string keyword value

¢ ID, group-ID are documented in fix command

¢ print = style name of this fix command

¢ N = print every N steps

¢ string = text string to print with optional variable names
¢ zero or more keyword/value pairs may be appended

¢ keyword = file or append or screen or title

file value = filename
append value = filename
screen value = yes or no
title value = string
string = text to print as lst line of output file

Examples:

fix extra all print 100 "Coords of marker atom = $x Sy $z"
fix extra all print 100 "Coords of marker atom = $x Sy $z" file coord.txt

Description:

Print a text string every N steps during a simulation run. This can be used for diagnostic purposes or as a
debugging tool to monitor some quantity during a run. The text string must be a single argument, so it should
be enclosed in double quotes if it is more than one word. If it contains variables it must be enclosed in double
quotes to insure they are not evaluated when the input script line is read, but will instead be evaluated each
time the string is printed.

See the yariable command for a description of equal style variables which are the most useful ones to use with
the fix print command, since they are evaluated afresh each timestep that the fix print line is output.
Equal-style variables calculate formulas involving mathematical operations, atom properties, group properties,
thermodynamic properties, global values calculated by a compute or fix, or references to other variables.

If the file or append keyword is used, a filename is specified to which the output generated by this fix will be
written. If file is used, then the filename is overwritten if it already exists. If append is used, then the filename
is appended to if it already exists, or created if it does not exist.

If the screen keyword is used, output by this fix to the screen and logfile can be turned on or off as desired.

The title keyword allow specification of the string that will be printed as the first line of the output file,
assuming the file keyword was used. By default, the title line is as follows:

Fix print output for fix ID
where ID is replaced with the fix-ID. if fitle = 'none’, then no title line will be printed

Restart, fix_modify, output, run start/stop, minimize info:

fix print command 258

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.

Restrictions: none
Related commands:

variable, print

Default:

The option defaults are no file output, screen = yes, and title string as described above.

fix print command 259

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix property/atom/tracer command

Syntax:
fix id group property/atom/tracer region_mark region-ID mark_step s keyword value ...

¢ ID, group-ID are documented in fix command

e property/atom/tracer = style name of this fix command

¢ region_mark = obligatory keyword

¢ region-ID = ID of region atoms must be in to be marked

¢ mark_step = obligatory keyword

¢ s = step when atoms are marked (or started to be marked, depending on marker_style)
® zero or more keyword/value pairs may be appended to args

¢ keyword = marker_style or check_mark_every

marker_style value = dirac or heaviside
dirac = use a dirac impulse at time step s to mark the particles
heaviside = use a dirac impulse staring at time step s to mark the particles
check_mark_every value = n
n = check every that many time-step if atom are in region to be marked

Examples:

fix tracer all property/atom/tracer region_mark mark mark_step 10000 marker_style dirac check_mar
Description:

Fix property/atom/tracer marks particles using either a Dirac delta impulse (default) or a Heaviside impulse,

as specified by the marker_style keyword. Particles are marked if they are inside the region specified by the
region_mark keyword. Using the Dirac impulse means that all the particles which are in the region at the

time-step specified by the mark_step keyword are marked. Using the Heaviside impulse means that all the

particles which pass by the specified region after the specified time-step are marked.

Keyword check_mark_every can be used to control how often the region is checked. Typically, this is useful

when the heaviside option is used, because you may not want to check each particle each time-step. However,
be careful not to choose this value too large, in this case you could skip particles passing through the region.

It is useful to combine this command with a compute nparticles/tracer/region command to compute residence
time distributions.

IMPORTANT NOTE: Using compute nparticles/tracer/region can change the tracer value (keyword
reset_marker.)

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files .

This fix computes a per-atom vector (the marker) which can be accessed by various output commands. . This
fix also computes a global scalar indicating how many particles were marked since the last time the global

scalar was computed. This scalar can also be accessed by various output commands. .

Restrictions:

fix property/atom/tracer command 260

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Currently, this feature does not support multi-sphere particles.

Related commands:

compute nparticles/tracer/region

Default:

marker_style = dirac, check_mark_every = 10

fix property/atom/tracer command 261

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix property/atom/tracer/stream command

Syntax:
fix id group property/atom/tracer/stream mark_step s n_tracer n insert_stream ins-ID every e

¢ ID, group-ID are documented in fix command

e property/atom/tracer/stream = style name of this fix command

¢ mark_step = obligatory keyword

¢ s = step when atoms are marked (or started to be marked, depending on marker_style)
¢ n_tracer = obligatory keyword

¢ n = number of tracer atoms to be marked

¢ insert_stream = obligatory keyword

¢ ins-ID = ID of a fix insert/stream

¢ every = obligatory keyword

e = 'once' or integer > 0
Examples:
fix tracer all property/atom/tracer/stream mark_step 10000 insert_stream ins n_tracer 20 every
Description:
Fix property/atom/tracer/stream marks a given number of particles (as defined by keyword n_tracer) which
are generated by a fix insert/stream command (as defined by keyword ins-ID. The first n_tracer particles
which pass the insertion face after time-step mark_step are being marked as tracers. In case of every = once,
this procedure is performed once, otherwise the procedure is repeated for the first n_tracer particles which
pass the insertion face after step mark_step + every.
Note that even for option once, particles are the marking procedure can extend over multiple packets of
insertion by a fix insert/stream in case that the number of particles inserted in a packet is smaller than the
number of particles to tag (as defined by keyword n_tracer).

An arbitrary number of fix property/atom/tracer/stream commands can be used for a given fix insert/stream.

It is useful to combine this command with a compute nparticles/tracer/region command to compute residence
time distributions.

IMPORTANT NOTE: Due to some parallel operation which needed to tag the particles, you need an atom
map to be allocated, see the atom modify command for details.

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files .

This fix computes a per-atom vector (the marker) which can be accessed by various output commands. . This
fix also computes a global scalar indicating how many particles were marked since the last time the global

scalar was computed. This scalar can also be accessed by various output commands. .

Restrictions:

fix property/atom/tracer/stream command 262

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Currently, this feature does not support multi-sphere particles.

Related commands:

compute nparticles/tracer/region

Default: none

fix property/atom/tracer/stream command 263

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix property/global command

fix property/atom command

Syntax:

fix id group property/atom variablename style restartvalue comm_ghost_value comm_reverse_ghost_va
fix id group property/global variablename style stylearg defaultvalue(s)...

¢ ID, group-ID are documented in fix command

e property/global or property/atom = style name of this fix command
¢ variablename = a valid C++ string

¢ restartvalues = 'yes' or 'no'

e comm_ghost_value = 'yes' or 'no'

¢ comm_reverse_ghost_value = 'yes' or 'no’'

fix property/global:
¢ style = scalar or vector or atomtype or matrix or atomtypepair

stylearg for scalar/vector: none
stylearg for matrix/atomtypepair: nCols

fix property/atom:

¢ style = scalar or vector

e restartvalue = yes or no

¢ communicate_ghost_value = yes or no

¢ communicate_reverse_ghost_value = yes or no

Examples:

fix m3 all property/global coefficientRestitution peratomtypepair 1 0.3
fix m5 all property/global characteristicVelocity scalar 2.
fix uf all property/atom uf vector yes no no 0. 0. O.

Description:

Fix property/atom reserves per-atom properties to be accessed by the user or other fixes. Style scalar
reserves one value per atom, style vecfor multiple values per atoms, where the number of defaultvalues (that
are assigned to the atoms at creation) determines the length of the vector. The group of atoms the fix is
applied to is always "all", irrespective of which group is used for the fix command . If you want to assign
different values for different groups, you can use the set command with keyword 'property/atom'. Keyword
restartvalues determines whether information about the values stored by this fix is written to binary restart
files. Keyword communicate_ghost_value determines whether information about the values stored by this fix
can be communicated to ghost particles (forward communication). The exact location during a time-step when
this happens depends on the model that uses this fix. Keyword communicate_reverse_ghost_value determines
whether information about the values stored by this fix can be communicated from ghost particles to owned
particles (reverse communication). The exact location during a time-step when this happens depends on the
model that uses this fix.

fix property/global command 264

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Fix property/global reserves global properties to be accessed by the user or other fixes or pair styles. The
number of defaultvalues determines the length of the vector / the number of matrix components . For style
vector or atomtype, the user provides the number of vector components . For style matrix or atomtypepair, the
user provides the number of matrix columns (nCols) .

Example: nCols= 2 and defaultvalues =12 3 4 5 6 would be mapped into a matrix like

[12]

[34]

[56]

Note that the number of default values must thus be a multiple of nCols. Note that vector and atomtype do the
same thing, afomtype is just provided to make input scripts more readable . Note that matrix and atomtypepair
both refer to a matrix of global values. However, a matrix defined via atomtypepair is required to be

symmetric.

Note that the group of atoms the fix is applied to is ignored (as the fix is not applied to atoms, but defines
values of global scope).

Restart, fix_modify, output, run start/stop, minimize info:

Information about this fix is written to binary restart files if you set restartvalue to 'yes'.
Restrictions: none

Related commands:

set, pair_gran

Default: none

fix property/atom command 265

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix rigid command

fix rigid/nve command
fix rigid/nvt command
fix rigid/npt command
fix rigid/nph command

fix rigid/small command

Syntax:
fix ID group-ID style bodystyle args keyword values

¢ ID, group-ID are documented in fix command
o style = rigid
¢ bodystyle = single or molecule or group

single args = none
molecule args = none
group args = N groupIDl groupID2
N = # of groups
groupIDl, groupID2, ... = list of N group IDs
¢ zero or more keyword/value pairs may be appended
¢ keyword = or femp or iso or aniso or x or y or z or couple or tparam or pchain or dilate or force or

torque or infile

langevin values = Tstart Tstop Tperiod seed
Tstart, Tstop = desired temperature at start/stop of run (temperature units)
Tdamp = temperature damping parameter (time units)
seed = random number seed to use for white noise (positive integer)
temp values = Tstart Tstop Tdamp
Tstart, Tstop = desired temperature at start/stop of run (temperature units)
Tdamp = temperature damping parameter (time units)
iso or aniso values = Pstart Pstop Pdamp
Pstart,Pstop = scalar external pressure at start/end of run (pressure units)
Pdamp = pressure damping parameter (time units)
X or y or z values = Pstart Pstop Pdamp
Pstart,Pstop = external stress tensor component at start/end of run (pressure units)
Pdamp = stress damping parameter (time units)
couple = none Or Xyz Or Xy Or yzZ Or XZ
tparam values = Tchain Titer Torder
Tchain = length of Nose/Hoover thermostat chain
Titer = number of thermostat iterations performed
Torder = 3 or 5 = Yoshida-Suzuki integration parameters
pchain values = Pchain
Pchain = length of the Nose/Hoover thermostat chain coupled with the barostat
dilate value = dilate-group-1ID
dilate-group—-ID = only dilate atoms in this group due to barostat volume changes
force values = M xflag yflag zflag
M = which rigid body from 1-Nbody (see asterisk form below)
xflag,yflag,zflag = off/on if component of center-of-mass force is active
torque values = M xflag yflag zflag
M = which rigid body from 1-Nbody (see asterisk form below)

fix rigid command 266

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

xflag,yflag,zflag = off/on if component of center-of-mass torque is active
infile filename
filename = file with per-body values of mass, center-of-mass, moments of inertia

Examples:

fix 1 clump rigid single
fix 2 fluid rigid group 3 clumpl clump2 clump3 torque * off off off

Description:

Treat one or more sets of atoms as independent rigid bodies. This means that each timestep the total force and
torque on each rigid body is computed as the sum of the forces and torques on its constituent particles and the
coordinates, velocities, and orientations of the atoms in each body are updated so that the body moves and
rotates as a single entity.

Examples of large rigid bodies are a large colloidal particle, or portions of a large biomolecule such as a
protein.

Example of small rigid bodies are patchy nanoparticles, such as those modeled in this paper by Sharon
Glotzer's group, clumps of granular particles, lipid molecules consiting of one or more point dipoles
connected to other spheroids or ellipsoids, irregular particles built from line segments (2d) or triangles (3d),
and coarse-grain models of nano or colloidal particles consisting of a small number of constituent particles.
Note that the fix shake command can also be used to rigidify small molecules of 2, 3, or 4 atoms, e.g. water
molecules. That fix treats the constituent atoms as point masses.

These fixes also update the positions and velocities of the atoms in each rigid body via time integration, in the
NVE ensemble.

IMPORTANT NOTE: Not all of the bodystyle options and keyword/value options are available for both the
rigid and rigid/small variants. See details below.

The rigid variant is typically the best choice for a system with a small number of large rigid bodies, each of
which can extend across the domain of many processors. It operates by creating a single global list of rigid
bodies, which all processors contribute to. MPI_Allreduce operations are performed each timestep to sum the
contributions from each processor to the force and torque on all the bodies. This operation will not scale well
in parallel if large numbers of rigid bodies are simulated.

Which of the two variants is faster for a particular problem is hard to predict. The best way to decide is to
perform a short test run. Both variants should give identical numerical answers for short runs. Long runs
should give statistically similar results, but round-off differences will accumulate to produce divergent
trajectories.

IMPORTANT NOTE: You should not update the atoms in rigid bodies via other time-integration fixes (e.g.
fix nve), or you will be integrating their motion more than once each timestep. When performing a hybrid
simulation with some atoms in rigid bodies, and some not, a separate time integration fix like fix nve should
be used for the non-rigid particles.

IMPORTANT NOTE: These fixes are overkill if you simply want to hold a collection of atoms stationary or
have them move with a constant velocity. A simpler way to hold atoms stationary is to not include those
atoms in your time integration fix. E.g. use "fix 1 mobile nve" instead of "fix 1 all nve", where "mobile" is the
group of atoms that you want to move. You can move atoms with a constant velocity by assigning them an
initial velocity (via the yelocity command), setting the force on them to 0.0 (via the fix setforce command),
and integrating them as usual (e.g. via the fix nve command).

fix rigid/small command 267

LIGGGHTS(R)-PUBLIC Users Manual

Each rigid body must have two or more atoms. An atom can belong to at most one rigid body. Which atoms
are in which bodies can be defined via several options.

For bodystyle single the entire fix group of atoms is treated as one rigid body. This option is only allowed for
fix rigid and its sub-styles.

For bodystyle molecule, each set of atoms in the fix group with a different molecule ID is treated as a rigid
body. This option is allowed for fix rigid and fix rigid/small, and their sub-styles. Note that atoms with a
molecule ID = 0 will be treated as a single rigid body. For a system with atomic solvent (typically this is
atoms with molecule ID = 0) surrounding rigid bodies, this may not be what you want. Thus you should be
careful to use a fix group that only includes atoms you want to be part of rigid bodies.

For bodystyle group, each of the listed groups is treated as a separate rigid body. Only atoms that are also in
the fix group are included in each rigid body. This option is only allowed for fix rigid and its sub-styles.

IMPORTANT NOTE: To compute the initial center-of-mass position and other properties of each rigid body,
the image flags for each atom in the body are used to "unwrap" the atom coordinates. Thus you must insure
that these image flags are consistent so that the unwrapping creates a valid rigid body (one where the atoms
are close together), particularly if the atoms in a single rigid body straddle a periodic boundary. This means
the input data file or restart file must define the image flags for each atom consistently or that you have used
the set command to specify them correctly. If a dimension is non-periodic then the image flag of each atom
must be 0 in that dimension, else an error is generated.

The force and torque keywords discussed next are only allowed for fix rigid and its sub-styles.

By default, each rigid body is acted on by other atoms which induce an external force and torque on its center
of mass, causing it to translate and rotate. Components of the external center-of-mass force and torque can be
turned off by the force and forque keywords. This may be useful if you wish a body to rotate but not translate,
or vice versa, or if you wish it to rotate or translate continuously unaffected by interactions with other
particles. Note that if you expect a rigid body not to move or rotate by using these keywords, you must insure
its initial center-of-mass translational or angular velocity is 0.0. Otherwise the initial translational or angular
momentum the body has will persist.

An xflag, yflag, or zflag set to off means turn off the component of force of torque in that dimension. A setting
of on means turn on the component, which is the default. Which rigid body(s) the settings apply to is
determined by the first argument of the force and torque keywords. It can be an integer M from 1 to Nbody,
where Nbody is the number of rigid bodies defined. A wild-card asterisk can be used in place of, or in
conjunction with, the M argument to set the flags for multiple rigid bodies. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of rigid bodies, then an asterisk with no numeric values means all bodies
from 1 to N. A leading asterisk means all bodies from 1 to n (inclusive). A trailing asterisk means all bodies
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive). Note that you can use the
force or torque keywords as many times as you like. If a particular rigid body has its component flags set
multiple times, the settings from the final keyword are used.

For computational efficiency, you may wish to turn off pairwise and bond interactions within each rigid body,
as they no longer contribute to the motion. The neigh modify exclude and delete bonds commands are used
to do this.

For computational efficiency, you should typically define one fix rigid or fix rigid/small command which
includes all the desired rigid bodies. LIGGGHTS(R)-PUBLIC will allow multiple rigid fixes to be defined,
but it is more expensive.

The constituent particles within a rigid body can be point particles (the default in LIGGGHTS(R)-PUBLIC) or
finite-size particles, such as spheres or ellipsoids or line segments or triangles. See the atom_style sphere and

fix rigid/small command 268

LIGGGHTS(R)-PUBLIC Users Manual

ellipsoid and line and tri commands for more details on these kinds of particles. Finite-size particles contribute
differently to the moment of inertia of a rigid body than do point particles. Finite-size particles can also
experience torque (e.g. due to frictional granular interactions) and have an orientation. These contributions are
accounted for by these fixes.

Forces between particles within a body do not contribute to the external force or torque on the body. Thus for
computational efficiency, you may wish to turn off pairwise and bond interactions between particles within
each rigid body. The neigh modify exclude and delete bonds commands are used to do this. For finite-size
particles this also means the particles can be highly overlapped when creating the rigid body.

The rigid style performs constant NVE time integration based on Richardson iterations.

The infile keyword allows a file of rigid body attributes to be read in from a file, rather then having
LIGGGHTS(R)-PUBLIC compute them. There are 3 such attributes: the total mass of the rigid body, its
center-of-mass position, and its 6 moments of inertia. For rigid bodies consisting of point particles or
non-overlapping finite-size particles, LIGGGHTS(R)-PUBLIC can compute these values accurately.
However, for rigid bodies consisting of finite-size particles which overlap each other,
LIGGGHTS(R)-PUBLIC will ignore the overlaps when computing these 3 attributes. The amount of error this
induces depends on the amount of overlap. To avoid this issue, the values can be pre-computed (e.g. using
Monte Carlo integration).

The format of the file is as follows. Note that the file does not have to list attributes for every rigid body
integrated by fix rigid. Only bodies which the file specifies will have their computed attributes overridden.
The file can contain initial blank lines or comment lines starting with "#" which are ignored. The first
non-blank, non-comment line should list N = the number of lines to follow. The N successive lines contain the
following information:

ID1 masstotal xcm ycm zcm ixx iyy izz ixy ixz iyz
ID2 masstotal xcm ycm zcm ixx iyy izz ixy ixz iyz

IDN masstotal xcm ycm zcm ixx iyy izz ixy ixz iyz

The rigid body IDs are all positive integers. For the single bodystyle, only an ID of 1 can be used. For the
group bodystyle, IDs from 1 to Ng can be used where Ng is the number of specified groups. For the molecule
bodystyle, use the molecule ID for the atoms in a specific rigid body as the rigid body ID.

The masstotal and center-of-mass coordinates (xcm,ycm,zcm) are self-explanatory. The center-of-mass should
be consistent with what is calculated for the position of the rigid body with all its atoms unwrapped by their
respective image flags. If this produces a center-of-mass that is outside the simulation box,
LIGGGHTS(R)-PUBLIC wraps it back into the box. The 6 moments of inertia (ixx,iyy,izz,ixy,ixz,iyz) should
be the values consistent with the current orientation of the rigid body around its center of mass. The values are
with respect to the simulation box XYZ axes, not with respect to the prinicpal axes of the rigid body itself.
LIGGGHTS(R)-PUBLIC performs the latter calculation internally.

IMPORTANT NOTE: If you use the infile keyword and write restart files during a simulation, then each time
a restart file is written, the fix also write an auxiliary restart file with the name rfile.rigid, where "rfile" is the
name of the restart file, e.g. tmp.restart.10000 and tmp.restart.10000.rigid. This auxiliary file is in the same
format described above and contains info on the current center-of-mass and 6 moments of inertia. Thus it can
be used in a new input script that restarts the run and re-specifies a rigid fix using an infile keyword and the
appropriate filename. Note that the auxiliary file will contain one line for every rigid body, even if the original
file only listed a subset of the rigid bodies.

IMPORTANT NOTE: The periodic image flags of atoms in rigid bodies are altered so that the rigid body can
be reconstructed correctly when it straddles periodic boundaries. The atom image flags are not
incremented/decremented as they would be for non-rigid atoms as the rigid body crosses periodic boundaries.

fix rigid/small command 269

LIGGGHTS(R)-PUBLIC Users Manual

Specifically, they are set so that the center-of-mass (COM) of the rigid body always remains inside the
simulation box.

This means that if you output per-atom image flags you cannot interpret them as you normally would. L.e. the
image flag values written to a dump file will be different than they would be if the atoms were not in a rigid
body. Likewise the compute msd will not compute the expected mean-squared displacement for such atoms if
the body moves across periodic boundaries. It also means that if you have bonds between a pair of rigid
bodies and the bond straddles a periodic boundary, you cannot use the replicate command to increase the
system size.

Here are details on how, you can post-process a dump file to calculate a diffusion coefficient for rigid bodies,
using the altered per-atom image flags written to a dump file. The image flags for atoms in the same rigid
body can be used to unwrap the body and calculate its center-of-mass (COM). As mentioned above, this COM
will always be inside the simulation box. Thus it will "jump" from one side of the box to the other when the
COM crosses a periodic boundary. If you keep track of the jumps, you can effectively "unwrap" the COM and
use that value to track the displacement of each rigid body, and thus the mean-squared displacement (MSD) of
an ensemble of bodies, and thus a diffusion coefficient.

Note that fix rigid does define image flags for each rigid body, which are incremented when the
center-of-mass of the rigid body crosses a periodic boundary in the usual way. These image flags have the
same meaning as atom images (see the "dump" command) and can be accessed and output as described below.

Restart, fix_modify, output, run start/stop, minimize info:

No information is written to binary restart files. read restart command for info on how to re-specify a fix in an
input script that reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

The fix_modify energy option is supported by the rigid/nvt fix to add the energy change induced by the
thermostatting to the system's potential energy as part of thermodynamic output.

The fix_modify temp and press options are supported by the rigid/npt and rigid/nph fixes to change the
computes used to calculate the instantaneous pressure tensor. Note that the rigid/nvt fix does not use any
external compute to compute instantaneous temperature.

The fixes compute a global scalar which can be accessed by various output commands. The scalar value
calculated by these fixes is "intensive". The scalar is the current temperature of the collection of rigid bodies.
This is averaged over all rigid bodies and their translational and rotational degrees of freedom. The
translational energy of a rigid body is 1/2 m v*2, where m = total mass of the body and v = the velocity of its
center of mass. The rotational energy of a rigid body is 1/2 I w2, where I = the moment of inertia tensor of
the body and w = its angular velocity. Degrees of freedom constrained by the force and forque keywords are
removed from this calculation, but only for the rigid and rigid/nve fixes.

This fix computes a global array of values which can be accessed by various output commands. The number
of rows in the array is equal to the number of rigid bodies. The number of columns is 15. Thus for each rigid
body, 15 values are stored: the xyz coords of the center of mass (COM), the xyz components of the COM
velocity, the xyz components of the force acting on the COM, the xyz components of the torque acting on the
COM, and the xyz image flags of the COM, which have the same meaning as image flags for atom positions
(see the "dump" command). The force and torque values in the array are not affected by the force and rorque
keywords in the fix rigid command; they reflect values before any changes are made by those keywords.

The ordering of the rigid bodies (by row in the array) is as follows. For the single keyword there is just one

rigid body. For the molecule keyword, the bodies are ordered by ascending molecule ID. For the group
keyword, the list of group IDs determines the ordering of bodies.

fix rigid/small command 270

LIGGGHTS(R)-PUBLIC Users Manual

The array values calculated by these fixes are "intensive", meaning they are independent of the number of
atoms in the simulation.

No parameter of these fixes can be used with the start/stop keywords of the run command. These fixes are not
invoked during energy minimization.

Restrictions:

These fixes are all part of the RIGID package. It is only enabled if LIGGGHTS(R)-PUBLIC was built with
that package. See the Making I IGGGHTS(R)-PUBLIC section for more info.

Related commands:
delete bonds, neigh modify exclude
Default:

The option defaults are force * on on on and torque * on on on, meaning all rigid bodies are acted on by
center-of-mass force and torque. Also Tchain = Pchain = 10, Titer = 1, Torder = 3.

(Hoover) Hoover, Phys Rev A, 31, 1695 (1985).

(Kamberaj) Kamberaj, Low, Neal, J] Chem Phys, 122, 224114 (2005).

(Martyna) Martyna, Klein, Tuckerman, J Chem Phys, 97, 2635 (1992); Martyna, Tuckerman, Tobias, Klein,
Mol Phys, 87, 1117.

(Miller) Miller, Eleftheriou, Pattnaik, Ndirango, and Newns, J Chem Phys, 116, 8649 (2002).

(Zhang) Zhang, Glotzer, Nanoletters, 4, 1407-1413 (2004).

fix rigid/small command 271

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix setforce command

Syntax:
fix ID group-ID setforce fx fy fz keyword value ...

¢ ID, group-ID are documented in fix command

¢ setforce = style name of this fix command

¢ fx fy,fz = force component values

¢ any of fx,fy,fz can be a variable (see below)

® zero or more keyword/value pairs may be appended to args
¢ keyword = region

region value = region-ID
region-ID = ID of region atoms must be in to have added force

Examples:

fix freeze indenter setforce 0.0 0.0 0.0
fix 2 edge setforce NULL 0.0 0.0
fix 2 edge setforce NULL 0.0 v_oscillate

Description:

Set each component of force on each atom in the group to the specified values fx,fy,fz. This erases all
previously computed forces on the atom, though additional fixes could add new forces. This command can be
used to freeze certain atoms in the simulation by zeroing their force, either for running dynamics or
performing an energy minimization. For dynamics, this assumes their initial velocity is also zero.

Any of the fx,fy,fz values can be specified as NULL which means do not alter the force component in that
dimension.

Any of the 3 quantities defining the force components can be specified as an equal-style or atom-style
variable, namely fx, fv, fz. If the value is a variable, it should be specified as v_name, where name is the
variable name. In this case, the variable will be evaluated each timestep, and its value used to determine the
force component.

Equal-style variables can specify formulas with various mathematical functions, and include thermo_style
command keywords for the simulation box parameters and timestep and elapsed time. Thus it is easy to
specify a time-dependent force field.

Atom-style variables can specify the same formulas as equal-style variables but can also include per-atom
values, such as atom coordinates. Thus it is easy to specify a spatially-dependent force field with optional
time-dependence as well.

If the region keyword is used, the atom must also be in the specified geometric region in order to have force
added to it.

Restart, fix_modify, output, run start/stop, minimize info:

fix setforce command 272

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix computes a global 3-vector of forces, which can be accessed by various output commands. This is the
total force on the group of atoms before the forces on individual atoms are changed by the fix. The vector
values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command, but
you cannot set forces to any value besides zero when performing a minimization. Use the fix_addforce
command if you want to apply a non-zero force to atoms during a minimization.

Restrictions: none

Related commands:

fix addforce, fix aveforce

Default: none

fix setforce command 273

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix sph/density/continuity command
Syntax:
fix ID group-ID sph/density/continuity

¢ ID, group-ID are documented in fix command
e sph/density/continuity = style name of this fix command

Examples:

fix density all sph/density/continuity
Description:

Based on the continuity equation in the form

dp

= -V - (pv)+7v-Vp

this fix calculates the density of each particle by the rule

dpa cqs e "
L = Z Ty, (l'” I'b) > vu” ab
dt b

where the summation is over all particles b other than particle a, m is the mass, v is the velocity, W, is the
interpolating kernel (documented in pair style sph/artVisc/tensCorr) and , is the gradient of W ;.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.
None of the fix_modify options are relevant to this fix.

No global scalar or vector or per_atom quantities are stored by this fix for access by various output
commands.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is not invoked during energy minimization.

Restrictions:
There can be only one fix sph/density.

Related commands:

pair_style sph/artVisc/tensCorr, fix sph/pressure, fix sph/density/corr

fix sph/density/continuity command 274

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

Default: none

(Liu and Liu, 2003) "Smoothed Particle Hydrodynamics: A Meshfree Particle Method", G. R. Liu and M. B.
Liu, World Scientific, p. 449 (2003).

(Monaghan, 1992) "Smoothed Particle Hydrodynamics", J. J. Monaghan, Annu. Rev. Astron. Astrophys., 30,
p- 543-574 (1992).

fix sph/density/continuity command 275

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix sph/density/corr command

Syntax:
fix ID group-ID sph/density/corr style args

¢ ID, group-ID are documented in fix command

¢ sph/density/corr = style name of this fix command
e style = shepard

¢ args = list of arguments for a particular style

shepard args = every nSteps
nSteps = determes number of timesteps
Examples:

fix corr all sph/density/corr shepard every 30
Description:

In general the pressure field in SPH exhibits large oscillations. One approach to overcome this problem is to
perform a filter over the density.

The filterstyle shepard is one of the most simple and quick correction. Every nSteps timesteps the following
rule is applied:

jrew Zb '”b”v(zb
Pa = L T
: Zb O | ab

P

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.
None of the fix_modify options are relevant to this fix.

No global scalar or vector or per_atom quantities are stored by this fix for access by various output
commands.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is not invoked during energy minimization.

Restrictions: none
Related commands:

pair_style sph/artVisc/tensCorr, fix sph/pressure, fix sph/density/continuity

Default: none

fix sph/density/corr command 276

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

(Liu and Liu, 2003) "Smoothed Particle Hydrodynamics: A Meshfree Particle Method", G. R. Liu and M. B.
Liu, World Scientific, p. 449 (2003).

fix sph/density/corr command 277

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix sph/density/summation command
Syntax:
fix ID group-ID sph/density/summation

¢ ID, group-ID are documented in fix command
¢ sph/density/summation = style name of this fix command

Examples:
fix density all sph/density/summation
Description:

Calculates the density field with the classic SPH-summation approach. The governing equation is given by:
Pa = Z '”h”vn,b
b

rho, is the density of particle a, m is the mass and W, denotes the interpolating kernel for the particle-particle
distance r, - r,. The summation is over all particles b other than particle a.

NOTE: In the current version boundary or image particles are not implemented. Therefore, the density
calculation in the vicinity to a wall will be wrong.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.
None of the fix_modify options are relevant to this fix.

No global scalar or vector or per_atom quantities are stored by this fix for access by various output
commands.

No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is not invoked during energy minimization.

Restrictions:
There can be only one fix sph/density/... (except fix_sph/density/corr)
Related commands:

pair_style sph/artVisc/tensCorr, fix sph/pressure, fix sph/density/continuity

Default: none

fix sph/density/summation command 278

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

(Liu and Liu, 2003) "Smoothed Particle Hydrodynamics: A Meshfree Particle Method", G. R. Liu and M. B.
Liu, World Scientific, p. 449 (2003).

(Monaghan, 1992) "Smoothed Particle Hydrodynamics", J. J. Monaghan, Annu. Rev. Astron. Astrophys., 30,
p. 543-574 (1992).

fix sph/density/summation command 279

LIGGGHTS(R)-PUBLIC Users Manual

LIGGGHTS WWW Site - LIGGGHTS Documentation - LIGGGHTS Commands

fix sph/pressure command

Syntax:
fix ID group-ID sph/pressure style args

¢ ID, group-ID are documented in fix command
e sph/pressure = style name of this fix command
e style = absolut or Tait

e args = list of arguments for a particular style

absolut args = NULL
Tait args = B density0 gamma
B = coefficient
density0 = reference density
gamma = isentropic exponent

Examples:

fix pressure all sph/pressure absolut
fix pressure all sph/pressure Tait 2000000. 1000. 7.

LIGGGHTS vs. LAMMPS Info:
This command is not available in LAMMPS.

Description:

The equation of state (EOS) for the SPH calculation is the link between the density field and the pressure

field. A lot of different equations can be found in the literature.

The absolut style was the first implemented EOS. Based on "An initiation to SPH" from Lucas Braune and

Thomas Lewiner this simple equation
2
P, =0.1p

is implemented, where |, is the density of particle a.

0

is applied. B denotes the pressure prefactor which is calculated by

In case of Tait style the rule

¥
ChM
B =

-
i
i

where ¢ is the speed of sound of the material. | is the reference density and

defined as c /c,.

fix sph/pressure command

is the isentropic exponent

280

http://www.liggghts.com/

LIGGGHTS(R)-PUBLIC Users Manual
NOTE: Monaghan has found that the speed of sound could be artificially reduced. (Monaghan, 1994)

Therefore, we can choose a greater time step. He argues that the minimum sound speed should be about ten
times greater than the maximum expected flow speed. (A < 1%)

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files.

None of the fix_modify options are relevant to this fix.

No global scalar or vector or per-atom quantities are stored by this fix for access by various output commands.
No parameter of this fix can be used with the start/stop keywords of the run command.

This fix is not invoked during energy minimization.

Restrictions:

One fix sph/density/summation (only dev-version) or sph/denstiy/continuity has to exist.

Related commands:

pair_style sph, fix sph/density/continuity

Default: none

fix sph/pressure command 281

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix spring command

Syntax:
fix ID group-ID spring keyword values

¢ ID, group-ID are documented in fix command
¢ spring = style name of this fix command
¢ keyword = tether or couple

tether values = K x y z RO

K = spring constant (force/distance units)
X,y,2z = point to which spring is tethered
RO = equilibrium distance from tether point (distance units)

couple values = group-ID2 K x y z RO
group-ID2 = 2nd group to couple to fix group with a spring
K = spring constant (force/distance units)
X,y,z = direction of spring
RO = equilibrium distance of spring (distance units)

Examples:

fix pull ligand spring tether 50.0 0.0 0.
fix pull ligand spring tether 50.0 0.0 5.
fix pull ligand spring tether 50.0 NULL NULL 2.0 3.0

fix 5 bilayerl spring couple bilayer2 100.0 NULL NULL 10.0 0.0
fix longitudinal pore spring couple ion 100.0 NULL NULL -20.0 0.0
fix radial pore spring couple ion 100.0 0.0 0.0 NULL 5.0

0.0 0.0 0
0.0 0.0 0

Description:

Apply a spring force to a group of atoms or between two groups of atoms. This is useful for applying an
umbrella force to a small molecule or lightly tethering a large group of atoms (e.g. all the solvent or a large
molecule) to the center of the simulation box so that it doesn't wander away over the course of a long
simulation. It can also be used to hold the centers of mass of two groups of atoms at a given distance or
orientation with respect to each other.

The tether style attaches a spring between a fixed point x,y,z and the center of mass of the fix group of atoms.
The equilibrium position of the spring is RO. At each timestep the distance R from the center of mass of the
group of atoms to the tethering point is computed, taking account of wrap-around in a periodic simulation
box. A restoring force of magnitude K (R - RO) Mi/ M is applied to each atom in the group where K is the
spring constant, Mi is the mass of the atom, and M is the total mass of all atoms in the group. Note that K thus
represents the total force on the group of atoms, not a per-atom force.

The couple style links two groups of atoms together. The first group is the fix group; the second is specified
by group-ID2. The groups are coupled together by a spring that is at equilibrium when the two groups are
displaced by a vector x,y,z with respect to each other and at a distance RO from that displacement. Note that
x,y,z is the equilibrium displacement of group-ID2 relative to the fix group. Thus (1,1,0) is a different spring
than (-1,-1,0). When the relative positions and distance between the two groups are not in equilibrium, the
same spring force described above is applied to atoms in each of the two groups.

For both the fether and couple styles, any of the x,y,z values can be specified as NULL which means do not
include that dimension in the distance calculation or force application.

fix spring command 282

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

The first example above pulls the ligand towards the point (0,0,0). The second example holds the ligand near
the surface of a sphere of radius 5 around the point (0,0,0). The third example holds the ligand a distance 3
away from the z=2 plane (on either side).

The fourth example holds 2 bilayers a distance 10 apart in z. For the last two examples, imagine a pore (a slab
of atoms with a cylindrical hole cut out) oriented with the pore axis along z, and an ion moving within the
pore. The fifth example holds the ion a distance of -20 below the z = 0 center plane of the pore (umbrella
sampling). The last example holds the ion a distance 5 away from the pore axis (assuming the center-of-mass
of the pore in X,y is the pore axis).

IMPORTANT NOTE: The center of mass of a group of atoms is calculated in "unwrapped" coordinates using
atom image flags, which means that the group can straddle a periodic boundary. See the dump doc page for a
discussion of unwrapped coordinates. It also means that a spring connecting two groups or a group and the
tether point can cross a periodic boundary and its length be calculated correctly. One exception is for rigid
bodies, which should not be used with the fix spring command, if the rigid body will cross a periodic
boundary. This is because image flags for rigid bodies are used in a different way, as explained on the fix rigid
doc page.

Restart, fix_modify, output, run start/stop, minimize info:
No information about this fix is written to binary restart files.

The fix_modify energy option is supported by this fix to add the energy stored in the spring to the system's
potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. The scalar is the spring
energy = 0.5 * K * r"2.

This fix also computes global 4-vector which can be accessed by various output commands. The first 3
quantities in the vector are xyz components of the total force added to the group of atoms by the spring. In the
case of the couple style, it is the force on the fix group (group-ID) or the negative of the force on the 2nd
group (group-ID2). The 4th quantity in the vector is the magnitude of the force added by the spring, as a
positive value if (r-R0) > 0 and a negative value if (r-R0) < 0. This sign convention can be useful when using
the spring force to compute a potential of mean force (PMF).

The scalar and vector values calculated by this fix are "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the spring energy to be included in the total potential energy of the system
(the quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix drag, fix spring/self, fix spring/rg, fix smd

Default: none

fix spring command 283

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix spring/rg command
Syntax:
fix ID group-ID spring/rg K RGO

¢ ID, group-ID are documented in fix command

e spring/rg = style name of this fix command

¢ K = harmonic force constant (force/distance units)

® RGO = target radius of gyration to constrain to (distance units)

if RGO = NULL, use the current RG as the target value
Examples:

fix 1 protein spring/rg 5.0 10.0
fix 2 micelle spring/rg 5.0 NULL

Description:

Apply a harmonic restraining force to atoms in the group to affect their central moment about the center of
mass (radius of gyration). This fix is useful to encourage a protein or polymer to fold/unfold and also when
sampling along the radius of gyration as a reaction coordinate (i.e. for protein folding).

The radius of gyration is defined as RG in the first formula. The energy of the constraint and associated force

on each atom is given by the second and third formulas, when the group is at a different RG than the target
value RGO.

-

) l J“".'r l Jn'l."-
RC;" — Vi ZI: mi | T; — Vi 2}: m;x;
E =K (Rg— Rap)’

_m; Rao L &
-F;: — 9K ﬂ (— ?) g — ﬂ 2}: m;xT;

The (xi - center-of-mass) term is computed taking into account periodic boundary conditions, m_i is the mass
of the atom, and M is the mass of the entire group. Note that K is thus a force constant for the aggregate force
on the group of atoms, not a per-atom force.

If RGO is specified as NULL, then the RG of the group is computed at the time the fix is specified, and that
value is used as the target.

Restart, fix_modify, output, run start/stop, minimize info:

fix spring/rg command 284

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix. No global or per-atom quantities are stored by this fix for access by various output commands. No
parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked

during energy minimization.

Restrictions: none

Related commands:

fix spring, fix spring/self fix drag, fix smd

Default: none

fix spring/rg command 285

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix spring/self command

Syntax:
fix ID group-ID spring/self K dir

¢ ID, group-ID are documented in fix command

¢ spring/self = style name of this fix command

¢ K = spring constant (force/distance units)

e dir = xyz, Xy, Xz, yz, X, ¥, or z (optional, default: xyz)

Examples:

fix tether boundary-atoms spring/self 10.0
fix zrest move spring/self 10.0 z

Description:

Apply a spring force independently to each atom in the group to tether it to its initial position. The initial
position for each atom is its location at the time the fix command was issued. At each timestep, the magnitude
of the force on each atom is -Kr, where r is the displacement of the atom from its current position to its initial
position. The distance r correctly takes into account any crossings of periodic boundary by the atom since it
was in its intitial position.

With the (optional) dir flag, one can select in which direction the spring force is applied. By default, the
restraint is applied in all directions, but it can be limited to the xy-, xz-, yz-plane and the x-, y-, or z-direction,
thus restraining the atoms to a line or a plane, respectively.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the original coordinates of tethered atoms to binary restart files, so that the spring effect will be
the same in a restarted simulation. See the read restart command for info on how to re-specify a fix in an

input script that reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

The fix_modify energy option is supported by this fix to add the energy stored in the per-atom springs to the
system's potential energy as part of thermodynamic output.

This fix computes a global scalar which can be accessed by various output commands. The scalar is an energy
which is the sum of the spring energy for each atom, where the per-atom energy is 0.5 * K * r*2. The scalar
value calculated by this fix is "extensive".

No parameter of this fix can be used with the start/stop keywords of the run command.

The forces due to this fix are imposed during an energy minimization, invoked by the minimize command.

IMPORTANT NOTE: If you want the per-atom spring energy to be included in the total potential energy of
the system (the quantity being minimized), you MUST enable the fix_modify energy option for this fix.

Restrictions: none

Related commands:

fix spring/self command 286

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

fix drag, fix spring, fix smd, fix spring/rg

Default: none

fix spring/self command 287

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix store/force command

Syntax:
fix ID group-ID store/force

¢ ID, group-ID are documented in fix command
e store/force = style name of this fix command

Examples:
fix 1 all store/force
Description:

Store the forces on atoms in the group at the point during each timestep when the fix is invoked, as described
below. This is useful for storing forces before constraints or other boundary conditions are computed which
modify the forces, so that unmodified forces can be written to a dump file or accessed by other output
commands that use per-atom quantities.

This fix is invoked at the point in the velocity-Verlet timestepping immediately after pair, bond forces have
been calculated. It is the point in the timestep when various fixes that compute constraint forces are calculated
and potentially modify the force on each atom. Examples of such fixes are fix shake, fix wall, and fix indent.

IMPORTANT NOTE: The order in which various fixes are applied which operate at the same point during the
timestep, is the same as the order they are specified in the input script. Thus normally, if you want to store
per-atom forces due to force field interactions, before constraints are applied, you should list this fix first
within that set of fixes, i.e. before other fixes that apply constraints. However, if you wish to include certain
constraints (e.g. fix shake) in the stored force, then it could be specified after some fixes and before others.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are relevant to
this fix.

This fix produces a per-atom array which can be accessed by various output commands. The number of
columns for each atom is 3, and the columns store the x,y,z forces on each atom. The per-atom values be

accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none
Related commands:
fix store state

Default: none

fix store/force command 288

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix store/state command

Syntax:

fix ID group-ID store/state N inputl input?2 keyword value
¢ ID, group-ID are documented in fix command

e store/state = style name of this fix command

¢ N = store atom attributes every N steps, N = 0 for initial store only
¢ input = one or more atom attributes

possible attributes = id, mol, type, mass,

X, y, 2z, XS, ys, zs, xu, yu, zu, ix, iy, iz,
vx, vy, vz, fx, fy, fz,
g, mux, muy, muz,
radius, omegax, omegay, omegaz,
angmomx, angmomy, angmomz, tgx, tqy, tqgz
c_ID, c_ID[N], f_ID, f_IDI[N], Vv_name

id = atom ID

mol = molecule ID

type = atom type

mass = atom mass

X,y,2z = unscaled atom coordinates

XS,VS,ZzS
Xu,yu, zu
ix,iy,1iz
VX,VYy,VZ
fx,fy, fz
e} atom

mux,muy,muz

radius

omegax, omegay, omegaz
angmomx, angmomy , angmomz
tax, tqy,tqz

scaled atom coordinates

unwrapped atom coordinates

box image that the atom is in

atom velocities

forces on atoms

charge

orientation of dipolar atom

radius of spherical particle

angular velocity of spherical particle
= angular momentum of aspherical particle
torque on finite-size particles

c_ID = per-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID
f_ID = per-atom vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom array calculated by a fix with ID
v_name = per-atom vector calculated by an atom-style variable with name

e zero or more keyword/value pairs may be appended

¢ keyword = com

com value

yes
Examples:

fix 1 all
fix 1 all
fix 2 all

store/state
store/state
store/state

Description:

or no

0 x vy z
0 xu yu zu com yes
1000 vx vy vz

Define a fix that stores attributes for each atom in the group at the time the fix is defined. If N is O, then the
values are never updated, so this is a way of archiving an atom attribute at a given time for future use in a
calculation or output. See the discussion of output commands that take fixes as inputs. And see for example,
the compute reduce, fix ave/atom, fix ave/histo, fix ave/spatial, and atom-style variable commands.

fix store/state command

289

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

If N is not zero, then the attributes will be updated every N steps.

IMPORTANT NOTE: Actually, only atom attributes specified by keywords like xu or vy are initially stored
immediately at the point in your input script when the fix is defined. Attributes specified by a compute, fix, or
variable are not initially stored until the first run following the fix definition begins. This is because

calculating those attributes may require quantities that are not defined in between runs.

The list of possible attributes is the same as that used by the dump custom command, which describes their
meaning.

If the com keyword is set to yes then the xu, yu, and zu inputs store the position of each atom relative to the
center-of-mass of the group of atoms, instead of storing the absolute position. This option is used by the

compute msd command.

The requested values are stored in a per-atom vector or array as discussed below. Zeroes are stored for atoms
not in the specified group.

Restart, fix_modify, output, run start/stop, minimize info:

This fix writes the per-atom values it stores to binary restart files, so that the values can be restored when a
simulation is restarted. See the read restart command for info on how to re-specify a fix in an input script that
reads a restart file, so that the operation of the fix continues in an uninterrupted fashion.

None of the fix_modify options are relevant to this fix.

If a single input is specified, this fix produces a per-atom vector. If multiple inputs are specified, a per-atom
array is produced where the number of columns for each atom is the number of inputs. These can be accessed

by various output commands. The per-atom values be accessed on any timestep.

No parameter of this fix can be used with the start/stop keywords of the run command. This fix is not invoked
during energy minimization.

Restrictions: none

Related commands:

dump custom, compute property/atom, variable

Default:

The option default is com = no.

fix store/state command 290

LIGGGHTS(R)-PUBLIC Users Manual
LIGGGHTS(R)-PUBLIC WWW Site - LIGGGHTS(R)-PUBLIC Documentation - LIGGGHTS(R)-PUBLIC

Commands

fix viscous command

Syntax:
fix ID group-ID viscous gamma keyword values ...

¢ ID, group-ID are documented in fix command

¢ viscous = style name of this fix command

¢ gamma = damping coefficient (force/velocity units)
¢ zero or more keyword/value pairs may be appended

keyword = scale

scale values = type ratio
type = atom type (1-N)
ratio = factor to scale the damping coefficient by

Examples:

fix 1 flow viscous 0.1
fix 1 damp viscous 0.5 scale 3 2.5

Description:

Add a viscous damping force to atoms in the group that is proportional to the velocity of the atom. The added
force can be thought of as a frictional interaction with implicit solvent, i.e. the no-slip Stokes drag on a
spherical particle. In granular simulations this can be useful for draining the kinetic energy from the system in
a controlled fashion. If used without additional thermostatting (to add kinetic energy to the system), it has the
effect of slowly (or rapidly) freezing the system; hence it can also be used as a simple energy minimization
technique.

The damping force F is given by F = - gamma * velocity. The larger the coefficient, the faster the kinetic
energy is reduced. If the optional keyword scale is used, gamma can scaled up or down by the specified factor
for atoms of that type. It can be used multiple times to adjust gamma for several atom types.

IMPORTANT NOTE: You should specify gamma in force/velocity units. This is not the same as mass/time
units, at least for some of the LIGGGHTS(R)-PUBLIC units options like "real” or "metal” that are not
self-consistent.

In a Brownian dynamics context, gamma = Kb T / D, where Kb = Boltzmann's constant, T = temperature, and
D = particle diffusion coefficient. D can be written as Kb T / (3 pi eta d), where eta = dynamic viscosity of the
frictional fluid and d = diameter of particle. This means gamma = 3 pi eta d, and thus is proportional to the
viscosity of the fluid and the particle diameter.

In the current implementation, rather than have the user specify a viscosity, gamma is specified directly in
force/velocity units. If needed, gamma can be adjusted for atoms of different sizes (i.e. sigma) by using the
scale keyword.

Note that Brownian dynamics models also typically include a randomized force term to thermostat the system
at a chosen temperature. The fix langevin command does this. It has the same viscous damping term as fix
viscous and adds a random force to each atom. The random force term is proportional to the sqrt of the chosen
thermostatting temperature. Thus if you use fix langevin with a target T = 0, its random force term is zero, and
you are essentially performing the same operation as fix viscous. Also note that the gamma of fix viscous is

fix viscous command 291

http://www.cfdem.com

LIGGGHTS(R)-PUBLIC Users Manual

related to the damping parameter of fix langevin, however the former is specified in units of force/velocity
and the latter in units of time, so that it can more easily be used as a thermostat.

Restart, fix_modify, output, run start/stop, minimize info:

No information about this fix is written to binary restart files. None of the fix_modify options are