sig
module PkgV :
sig
type t = int
val compare : 'a -> 'a -> int
val hash : 'a -> 'a
val equal : 'a -> 'a -> bool
end
module G :
sig
type t = Graph.Imperative.Digraph.ConcreteBidirectional(PkgV).t
module V :
sig
type t = PkgV.t
val compare : t -> t -> int
val hash : t -> int
val equal : t -> t -> bool
type label = PkgV.t
val create : label -> t
val label : t -> label
end
type vertex = V.t
module E :
sig
type t = PkgV.t * PkgV.t
val compare : t -> t -> int
type vertex = vertex
val src : t -> vertex
val dst : t -> vertex
type label = unit
val create : vertex -> label -> vertex -> t
val label : t -> label
end
type edge = E.t
val is_directed : bool
val is_empty : t -> bool
val nb_vertex : t -> int
val nb_edges : t -> int
val out_degree : t -> vertex -> int
val in_degree : t -> vertex -> int
val mem_vertex : t -> vertex -> bool
val mem_edge : t -> vertex -> vertex -> bool
val mem_edge_e : t -> edge -> bool
val find_edge : t -> vertex -> vertex -> edge
val find_all_edges : t -> vertex -> vertex -> edge list
val succ : t -> vertex -> vertex list
val pred : t -> vertex -> vertex list
val succ_e : t -> vertex -> edge list
val pred_e : t -> vertex -> edge list
val iter_vertex : (vertex -> unit) -> t -> unit
val fold_vertex : (vertex -> 'a -> 'a) -> t -> 'a -> 'a
val iter_edges : (vertex -> vertex -> unit) -> t -> unit
val fold_edges : (vertex -> vertex -> 'a -> 'a) -> t -> 'a -> 'a
val iter_edges_e : (edge -> unit) -> t -> unit
val fold_edges_e : (edge -> 'a -> 'a) -> t -> 'a -> 'a
val map_vertex : (vertex -> vertex) -> t -> t
val iter_succ : (vertex -> unit) -> t -> vertex -> unit
val iter_pred : (vertex -> unit) -> t -> vertex -> unit
val fold_succ : (vertex -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val fold_pred : (vertex -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val iter_succ_e : (edge -> unit) -> t -> vertex -> unit
val fold_succ_e : (edge -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val iter_pred_e : (edge -> unit) -> t -> vertex -> unit
val fold_pred_e : (edge -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val create : ?size:int -> unit -> t
val clear : t -> unit
val copy : t -> t
val add_vertex : t -> vertex -> unit
val remove_vertex : t -> vertex -> unit
val add_edge : t -> vertex -> vertex -> unit
val add_edge_e : t -> edge -> unit
val remove_edge : t -> vertex -> vertex -> unit
val remove_edge_e : t -> edge -> unit
end
module S :
sig
type elt = PkgV.t
type t = Set.Make(PkgV).t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val max_elt : t -> elt
val choose : t -> elt
val split : elt -> t -> t * bool * t
val find : elt -> t -> elt
end
module O :
sig
val transitive_reduction : G.t -> unit
module O :
sig
type g = G.t
val transitive_closure : ?reflexive:bool -> g -> g
val add_transitive_closure : ?reflexive:bool -> g -> g
val transitive_reduction : ?reflexive:bool -> g -> g
val replace_by_transitive_reduction : ?reflexive:bool -> g -> g
val mirror : g -> g
val complement : g -> g
val intersect : g -> g -> g
val union : g -> g -> g
end
module S :
sig
type elt = G.V.t
type t = Set.Make(G.V).t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val max_elt : t -> elt
val choose : t -> elt
val split : elt -> t -> t * bool * t
val find : elt -> t -> elt
end
val subgraph : G.t -> S.elt list -> G.t
end
module DotPrinter :
sig
module Display :
sig
type t = Graph.Imperative.Digraph.ConcreteBidirectional(PkgV).t
module V :
sig
type t = PkgV.t
val compare : t -> t -> int
val hash : t -> int
val equal : t -> t -> bool
type label = PkgV.t
val create : label -> t
val label : t -> label
end
type vertex = V.t
module E :
sig
type t = PkgV.t * PkgV.t
val compare : t -> t -> int
type vertex = vertex
val src : t -> vertex
val dst : t -> vertex
type label = unit
val create : vertex -> label -> vertex -> t
val label : t -> label
end
type edge = E.t
val is_directed : bool
val is_empty : t -> bool
val nb_vertex : t -> int
val nb_edges : t -> int
val out_degree : t -> vertex -> int
val in_degree : t -> vertex -> int
val mem_vertex : t -> vertex -> bool
val mem_edge : t -> vertex -> vertex -> bool
val mem_edge_e : t -> edge -> bool
val find_edge : t -> vertex -> vertex -> edge
val find_all_edges : t -> vertex -> vertex -> edge list
val succ : t -> vertex -> vertex list
val pred : t -> vertex -> vertex list
val succ_e : t -> vertex -> edge list
val pred_e : t -> vertex -> edge list
val iter_vertex : (vertex -> unit) -> t -> unit
val fold_vertex : (vertex -> 'a -> 'a) -> t -> 'a -> 'a
val iter_edges : (vertex -> vertex -> unit) -> t -> unit
val fold_edges : (vertex -> vertex -> 'a -> 'a) -> t -> 'a -> 'a
val iter_edges_e : (edge -> unit) -> t -> unit
val fold_edges_e : (edge -> 'a -> 'a) -> t -> 'a -> 'a
val map_vertex : (vertex -> vertex) -> t -> t
val iter_succ : (vertex -> unit) -> t -> vertex -> unit
val iter_pred : (vertex -> unit) -> t -> vertex -> unit
val fold_succ : (vertex -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val fold_pred : (vertex -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val iter_succ_e : (edge -> unit) -> t -> vertex -> unit
val fold_succ_e : (edge -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val iter_pred_e : (edge -> unit) -> t -> vertex -> unit
val fold_pred_e : (edge -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
val create : ?size:int -> unit -> t
val clear : t -> unit
val copy : t -> t
val add_vertex : t -> vertex -> unit
val remove_vertex : t -> vertex -> unit
val add_edge : t -> vertex -> vertex -> unit
val add_edge_e : t -> edge -> unit
val remove_edge : t -> vertex -> vertex -> unit
val remove_edge_e : t -> edge -> unit
val vertex_name : int -> string
val graph_attributes : 'a -> 'b list
val get_subgraph : 'a -> 'b option
val default_edge_attributes : 'a -> 'b list
val default_vertex_attributes : 'a -> 'b list
val vertex_attributes : 'a -> 'b list
val edge_attributes : 'a -> 'b list
end
val fprint_graph : Format.formatter -> Display.t -> unit
val output_graph : out_channel -> Display.t -> unit
val print :
Format.formatter ->
Defaultgraphs.IntPkgGraph.DotPrinter.Display.t -> unit
end
module DIn :
sig
val parse : string -> Graph.Builder.I(G).G.t
val parse_bounding_box_and_clusters :
string -> Graph.Builder.I(G).G.t * string * Graph.Dot.clusters_hash
end
module GmlPrinter : sig val print : Format.formatter -> G.t -> unit end
val add_edge :
bool ->
Defaultgraphs.IntPkgGraph.G.t ->
Defaultgraphs.IntPkgGraph.G.vertex ->
Defaultgraphs.IntPkgGraph.G.vertex -> unit
val conjdepgraph_int :
?transitive:bool ->
Defaultgraphs.IntPkgGraph.G.t ->
Cudf.universe -> Defaultgraphs.IntPkgGraph.G.vertex -> unit
val conjdepgraph :
Cudf.universe ->
Defaultgraphs.IntPkgGraph.G.vertex list -> Defaultgraphs.IntPkgGraph.G.t
val conjdeps :
Defaultgraphs.IntPkgGraph.G.t ->
Defaultgraphs.IntPkgGraph.G.V.t -> Defaultgraphs.IntPkgGraph.G.V.t list
val dependency_graph :
?conjunctive:bool -> Cudf.universe -> Defaultgraphs.IntPkgGraph.G.t
val dependency_graph_list :
?conjunctive:bool ->
Cudf.universe ->
Defaultgraphs.IntPkgGraph.G.vertex list -> Defaultgraphs.IntPkgGraph.G.t
val load : 'a -> string -> Defaultgraphs.IntPkgGraph.G.t
end