# -*- coding: utf-8; mode: tcl; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- vim:fenc=utf-8:ft=tcl:et:sw=4:ts=4:sts=4 PortSystem 1.0 PortGroup python 1.0 name py-dask version 2024.4.1 revision 0 categories-append devel license BSD supported_archs noarch platforms {darwin any} python.versions 39 310 311 312 313 maintainers {stromnov @stromnov} openmaintainer description Minimal task scheduling abstraction. long_description Dask provides multi-core execution on larger-than-memory \ datasets using blocked algorithms and task scheduling. \ It maps high-level NumPy, Pandas, and list operations on \ large datasets on to many operations on small in-memory \ datasets. It then executes these graphs in parallel on a \ single machine. Dask lets us use traditional NumPy, \ Pandas, and list programming while operating on \ inconveniently large data in a small amount of space. homepage https://github.com/dask/dask/ checksums rmd160 c23858962cff7cfe46e9b76f5ea842bf7a23b6cc \ sha256 6cd8eb03ddc8dc08d6ca5b167b8de559872bc51cc2b6587d0e9dc754ab19cdf0 \ size 9337972 if {${name} ne ${subport}} { depends_build-append \ port:py${python.version}-versioneer depends_lib-append port:py${python.version}-click \ port:py${python.version}-cloudpickle \ port:py${python.version}-fsspec \ port:py${python.version}-packaging \ port:py${python.version}-partd \ port:py${python.version}-toolz \ port:py${python.version}-yaml if {${python.version} < 312} { depends_lib-append port:py${python.version}-importlib-metadata } }