P OpenCTM

Software Library version 1.0.3

Developers Manual

Copyright © 2009-2010 Marcus Geelnard

Contents

1 Introduction 2
2 Concepts 3
2.1 TheOpenCTMAPI 3
2.2 Thetrianglemesh 3
2.2.1 Triangleindices L. 4

2.2.2 Vertex coordinates 4

223 Normals. 4

224 UVecoordinates 4

2.2.5 Custom vertex attributes 5

2.3 TheOpenCTMcontext 5

3 Compression Methods 7
3.1 RAW L e 7

32 MGIL . ..o 7

33 MG2. . .o 8

4 Basic Usage 9
4.1 Prerequisites 9
4.2 Loading OpenCTMfiles 9

4.3 Creating OpenCTM files 10

5 Controlling Compression 11
5.1 Selecting the compression method 11

5.2 Selecting the compressionlevel 11

5.3 Selecting fixed point precision oL 12
5.3.1 Vertex coordinate precision 12

5.3.2 Normal precision 13

5.3.3 UV coordinate precision 13

5.3.4 Custom attribute precision 13

6 Error Handling 14

7 C++ Extensions
7.1 The CTMimporter class
7.2 The CTMexporter class

Chapter 1

Introduction

The OpenCTM file format is an open format for storing 3D triangle meshes. One
of the main advantages over other similar file formats is its ability to losslessly
compress the triangle geometry to a fraction of the corresponding raw data size.

This document describes how to use the OpenCTM API to load and save
OpenCTM format files. It is mostly written for C/C++ users, but should be useful
for other programming languages too, since the concepts and function calls are
virtually identical regardless of programming language.

For a complete reference to the OpenCTM API, please use the Doxygen generated
OpenCTM API Reference, which describes all API functions, types, constants etc.

Chapter 2

Concepts

2.1 The OpenCTM API

The OpenCTM API makes it easy to read and write OpenCTM format files. The
API is implemented in the form of a software library that an application can be
linked to in order to access the OpenCTM APIL.

The software library itself is written in standard, portable C language, but can be
used from many other programming languages (writing language bindings for
new languages should be fairly straight forward, since the API was written with
cross-language portability in mind).

2.2 The triangle mesh

The triangle mesh, in OpenCTM terms, is managed in a format that is well suited
for a modern 3D rendering pipeline, such as OpenGL.

At a glance, the OpenCTM mesh has the following properties:

* A vertex is a set of attributes that uniquely identify the vertex. This
includes: vertex coordinate, normal, UV coordinate(s) and custom vertex
attribute(s) (such as color, weight, etc).

* A triangle is described by three vertex indices.

* In the OpenCTM API, these mesh data are treated as arrays (an integer
array for the triangle indices, and floating point arrays for the vertex data).

* All vertex data arrays in a mesh must have the same number of elements
(for instance, there is exactly one normal associated with each vertex
coordinate).

* All mesh data are optional, except for the triangle indices and the vertex
coordinates. For instance, it is possible to leave out the normal information.

For an example of the mesh data structure see table 2.1 (vertex data) and table 2.2
(triangle data).

2.2.1 Triangle indices

Each triangle is described by three integers: one vertex index for each corner of
the triangle). The triangle index array looks like this:

’ tri) ‘ trig ‘ trig ‘ tri) ‘ tri} ‘ triy ‘ ‘ trig, ‘ trit, ‘ tria, ‘

...where trii is the vertex index for the j:th corner of the k:th triangle.

2.2.2 Vertex coordinates

Each vertex coordinate is described by three floating point values: x, y and z. The
vertex coordinate array looks like this:

’530‘3/0‘20‘531‘3/1‘21‘---‘xN‘yN‘ZN‘

...where x, y;, and zj, are the x, y and z coordinates of the k:th vertex.

2.2.3 Normals

Each normal is described by three floating point values: z, y and z. The normal
array looks like this:

Lzolwo 20 o[y [z] [an [un [2w]

...where x, y; and z;, are the x, y and z components of the k:th normal.

2.2.4 UV coordinates

A mesh may have several UV maps, where each UV map is described by:
* A UV coordinate array.
* A unique UV map name.
* A file name reference (optional).

Each UV coordinate is described by two floating point values: v and v. A UV
coordinate array looks like this:

(o [0 [ar [o1 [z [0z [oo [uw [0w]

...where u; and vy, are the v and v components of the k:th UV coordinate.

2.2.5 Custom vertex attributes

A mesh may have several custom vertex attribute maps, where each attribute map
is described by:

* A vertex attribute array.
* A unique attribute map name.

Each vertex attribute is described by four floating point values: a, b, c and d. An
attribute array looks like this:

’ao‘bo‘co‘do‘al‘bl‘Cl‘dl‘...‘CLN‘bN‘CN‘dN‘

...where ay, by, ¢, and dj, are the four attribute values of the k:th attribute.

2.3 The OpenCTM context

The OpenCTM API uses a context for almost all operations (function calls). The
context is created and destroyed with the functions ctmNewContext() and
ctmFreeContext(), respectively.

A program may instantiate any number of contexts, and all OpenCTM function
calls are completely thread safe (multiple threads can use the OpenCTM API at
the same time), as long as each context instance is handled by a single thread.

Each context is fully self contained and independent of other contexts.

There are two types of OpenCTM context: import contexts and export contexts.
Import contexts are used for importing OpenCTM files, and export contexts are
used for exporting OpenCTM files.

The context type is selected when creating the context.

Index 0 1 2 3 4 ... | N
Vertex Vo V1 V2 V3 V4 . UN
Normal ng |my | ne |[ng |ng | ... | nN
UVCoordl tlg tll t12 t13 If14 Cen th
UVCoord2 t20 t21 t22 t23 t24 cen t2N
Attribl alo a11 CL12 CL13 a14 Ce alN
Attrib2 CL20 a21 a22 a23 a24 Cen a2N

Table 2.1: Mesh vertex data structure in OpenCTM, for a mesh with normals, two
UV coordinates per vertex, and two custom attributes per vertex.

Triangle | trig | triy | triy | tris | trig [... | trin |

Table 2.2: Mesh triangle data structure in OpenCTM, where triy, is a tuple of three
vertex indices. For instance, trig = (0, 1,2), tri; = (0,2, 3), tria = (3,5,4), ...

Chapter 3

Compression Methods

The OpenCTM file format supports a few different compression methods, each
with its own advantages and disadvantages. The API makes it possible to select
which method to use when creating OpenCTM files (the default method is MG1).

3.1 RAW

The RAW compression method is not really a compression method, since it only
stores the data in a raw, uncompressed form. The result is a file with the same size
and data format as the in-memory mesh data structure.

The RAW method is mostly useful for testing purposes, but can be preferred in
certain situations, for instance when file writing speeds and a small memory
footprint is more important than minimizing file sizes.

Another situation where the RAW method can be useful is when you need an
easily parsable binary file format. Usually the OpenCTM API can be used in
almost any application, but in some environments, such as certain script languages
or data inspecion tools, it can be handy to have access to the raw data.

3.2 MG1

The MG1 compression method effectively reduces the size of the mesh data by
re-coding the connectivity information of the mesh into an easily compressible
format. The data is then compressed using LZMA.

The floating point data, such as vertex coordinates and normals, is fully preserved
in the MG1 method, by simply applying lossless LZMA compression to it.

Under typical condititions, the connectivity information is compressed to about
two bytes per triangle (17% of the original size), and vertex data is compressed to

about 75% of the original size.

While creating MG files can be a relatively slow process (compared to the RAW
method, for instance) the reading speed is usually very high, thanks to the fast
LZMA decoder and the uncomplicated data format.

3.3 MG2

The MG2 compression method offers the highest level of compression among the
different OpenCTM methods. It uses the same method for compressing
connectivity information as the MG1 method, but does a better job at compressing
vertex data.

Vertex data is converted to a fixed point representation, which allows for efficient,
lossless, prediction based data compression algorithms.

In short, the MG2 method divides the mesh into small sub-spaces, sorts the data
geometrically, and applies delta-prediction to the data, which effectively lowers
the data entropy. The re-coded vertex data is then compressed with LZMA.

When using the OpenCTM API for creating MG2 files you can trade mesh
resolution for compression ratio, and the API provides several functions for
controlling the resolution of different vertex attributes independently. Therefor it
is usually important to know the resolution requirements for your specific
application when using the MG2 method.

In some applications, such as games, movies and art, it is important that the 3D
model is not visually degraded by compression. In such applications you will
typically tune your resolution settings using trial and error, until you find a setting
that does not alter the model visually.

In other applications, such as CAD/CAM, 3D scanning, calibration, etc,
reasonable resolution settings can usually be derived from the limitations of the
process in which the model is used. For instance, there is usually no need for
nanometer precision in the design of an airplane wing, and there is little use of
micrometer resolution in a manufacturing process that can not reproduce features
smaller than 0.15 mm.

As a side effect of the fact that MG2 produces smaller files than the MG1 method
does, loading files is usually faster with the MG2 method than with the MG1
method. Saving files with the MG2 method is about as fast as with the MG1
method.

Chapter 4

Basic Usage

4.1 Prerequisites

To use the OpenCTM API, you need to include the OpenCTM include file, like
this:

[#include <openctm.h>

You also need to link with the OpenCTM import library. For instance, in MS
Visual Studio you can add openctm.lib” to your Additional Dependencies field in
the Linker section. For gcc/g++ or similar compilers, you will typically add
-lopenctm to the list of compiler options, for instance:

[> gt+ —o foo foo.cpp —-lopenctm }

4.2 Loading OpenCTM files

Below is a minimal example of how to load an OpenCTM file with the OpenCTM
API, in just a few lines of code:

CTMcontext context;
CTMuint vertCount, triCount, =* indices;
CTMfloat * vertices;

// Create a new Importer context
context = ctmNewContext (CTM_IMPORT) ;

// Load the OpenCTM file
ctmLoad (context, "mymesh.ctm");
if (ctmGetError (context) == CTM_NONE)
{
// Access the mesh data

10

vertCount = ctmGetlInteger (context, CTM_VERTEX_ COUNT) ;
vertices = ctmGetFloatArray (context, CTM_VERTICES) ;
triCount = ctmGetInteger (context, CTM_TRIANGLE_COUNT) ;
indices = ctmGetIntegerArray (context, CTM_INDICES) ;

// Deal with the mesh (e.g. transcode it to our
// internal representation)

//

// Free the context
ctmFreeContext (context) ;

4.3 Creating OpenCTM files

Below is a minimal example of how to save an OpenCTM file with the OpenCTM
API, in just a few lines of code:

void MySaveFile (CTMuint aVertCount, CTMuint aTriCount,
CTMfloat * aVertices, CTMuint * alIndices,
const char * aFileName)

CTMcontext context;

// Create a new exporter context
context = ctmNewContext (CTM_EXPORT) ;

// Define our mesh representation to OpenCTM
ctmDefineMesh (context, aVertices, aVertCount, alndices,
aTriCount, NULL) ;

// Save the OpenCTM file
ctmSave (context, aFileName) ;

// Free the context
ctmFreeContext (context) ;

11

Chapter 5

Controlling Compression

When creating OpenCTM files, one of the most important things to control with
the API is the compression method.

5.1 Selecting the compression method

You can select which compression method to use with the
ctmCompressionMethod() function. The different options are:

Name Description

CTM_METHOD_RAW | Use the RAW compression method.
CTM_METHOD_MG1 | Use the MG1 compression method (default).
CTM_METHOD_MG?2 | Use the MG2 compression method.

For instance, to select the MG2 compression method for a given OpenCTM
context, use:

[ctmCompressionMethod (context, CTM_METHOD_MG2) ;

5.2 Selecting the compression level

You can select which LZMA compression level to use with the
ctmCompressionLevel() function. The compression level can be in the range 0-9,
where 0 is the fastest compression, and 9 is the best compression. The
compression level also affects the amount of memory that is used during
compression (anywhere from a few megabytes to several hundred megabytes).

[ctmCompressionMethod (context, 4);

The default compression level is 1.

12

5.3 Selecting fixed point precision

When the MG2 compression method is used, further compression control is
provided through the API that deals with the fixed point precision for different
vertex attributes. The different attribute precisions that can be controlled are:

Attribute API function
Vertex coordinate | ctmVertexPrecision() / ctmVertexPrecisionRel()
Normal ctmNormalPrecision()

UV coordinates ctmUVCoordPrecision()
Custom attributes | ctmAttribPrecision()

Reasonable default values for the fixed point precisions are selected by the API
unless the corresponding API functions are called. However, the API does not
know the requirements for the mesh, which is why it is always a good idea to
specify the fixed point precision that is most relevant for your specific mesh.

5.3.1 Vertex coordinate precision

The vertex coordinate precision can be controlled in two ways:
* Absolute precision - ctm VertexPrecision().
* Relative precision - ctmVertexPrecisionRel().

You typically specify the absolute precision when you know the properties of the
mesh and what is going to be used for (for instance, if it is a product of a
measurment procecss, or if it will be used in a manufacturing process). For
example, if the vertex coordinate unit is meters, and the precision is specified as
0.001, the fixed point precision will be 1 mm:

L ctmVertexPrecision (context, 0.001);

When you do not know much about the mesh, it can be useful to specify the
relative precision. The ctmVertexPrecisionRel() function will analyze the mesh to
find a useful base measure, which is multiplied by a scaling factor that is given as
an argument to the function.

The relative precision function uses the average triangle edge length as the base
measure. So for example, if you specify 0.01 as the relative precision, the
precision will be 1% of the average triangle edge length, which is usually a good
figure for meshes that will be used in visualization applications:

[ctmVertexPrecisionRel (context, 0.01);

It should be noted that unlike the ctmVertexPrecision() function, the
ctmVertexPrecisionRel() function requires that the mesh has been specified before
calling the function.

13

The default vertex coordinate precision is 2710 ~ 0.00098.

5.3.2 Normal precision

In the MG2 compression method, each vertex normal is represented in spherical
coordinates (the coordinate system is aligned to the average normal of all triangles
that connect to the vertex).

The precision controls both the angular resolution and the radial resolution
(magnitude). For instance, 0.01 means that the circle is divided into 100 steps,
and the normal magnitude is rounded to 2 decimals:

L ctmNormalPrecision (context, 0.01); J

The default normal precision is 2~° ~ 0.0039.

5.3.3 UV coordinate precision

UV coordinate precision is specified on a per UV map basis, and gives the
absolute precision in UV coordinate space.

The effects of different precisions depend on many different things. For instance
if the UV map is used for mapping a 2D texture onto the triangle mesh, the
resolution of the texture can influence the required UV coordinate precision (e.g.
a 4096x4096 texture may require better precision than a 256x256 texture). The
resolution of the mesh may also affect the required UV coordinate precision.

To specify a resolution of 0.001 for the UV map uvM ap, use:

[ctmUVCoordPrecision (context, uvMap, 0.001); j

The default UV coordinate precision is 272 ~ 0.00024.

5.3.4 Custom attribute precision

As with UV coordinates, the precision for custom vertex attributes are specified
on a per attribute basis.

The precision of a custom attribute depends entirely on the type of attribute. For
instance, standard color attributes typically do not require more then eigh bits per
component, which means that 1/256 is a good precision setting (if the value range
is [0, 1]):

[ctmAttribPrecision (context, attribMap, 1.0/256.0); }

For integer values, the precision 1.0 is a good choice.

The default vertex attribute precision is 278 ~ 0.0039.

14

Chapter 6

Error Handling

An error can occur when calling any of the OpenCTM API functions. To check
for errors, call the ctmGetError() function, which returns a positive error code if
something went wrong, or zero (CTM_NONE) if no error has occured.

See 6.1 for a list of possible error codes.

The last error code that indicates a failure is stored per OpenCTM context until
the ctmGetError() function is called. Calling the function will reset the error state.

It is also possible to convert an error code to an error string, using the
ctmErrorString() function, which takes an error code as its argument, and returns
a constant C string (pointer to a null terminated UTF-8 format character string).

15

Code

Description

CTM_NONE (zero)

No error has occured (everything is OK).

CTM_INVALID_CONTEXT

The OpenCTM context was invalid (e.g.
NULL).

CTM_INVALID_ARGUMENT

A function argument was invalid.

CTM_INVALID_OPERATION

The operation is not allowed.

CTM_INVALID_MESH

The mesh was invalid (e.g. no vertices).

CTM_OUT_OF_MEMORY

Not enough memory to proceed.

CTM_FILE_ERROR

File 1/O error.

CTM_BAD_FORMAT

File format error (e.g. unrecognized format or
corrupted file).

CTM_LZMA _ERROR

An error occured within the LZMA library.

CTM_INTERNAL_ERROR

An internal error occured (indicates a bug).

CTM_UNSUPPORTED_FORMAT_VERSION

Unsupported file format version.

Table 6.1: OpenCTM error codes.

16

Chapter 7

C++ Extensions

To take better advantage of some of the C++ language features, such as exception
handling, a few C++ wrapper classes are availbale through the standard API when
compiling a C++ program. As usual, just include “openctm.h”, and you will have
access to two C++ classes: CTMimporer and CTMexporter.

The main differences between the C++ classes and the standard API are:

e The C++ classes call ctmNewContext() and ctmFreeContext() in their
constructors and destructors respectively, which makes it easier to use the
C++ dynamic scope mechanisms (such as exception handling).

* Whenever an OpenCTM error occurs, an exception is thrown. Hence, there
is no method corresponding to the ctmGetError() function.

7.1 The CTMimporter class

Here is an example of how to use the CTMimporter class in C++:

try

{
// Create a new OpenCTM importer object
CTMimporter ctm;

// Load the OpenCTM file
ctm.Load ("mymesh.ctm") ;

// Access the mesh data

CTMuint vertCount = ctm.GetInteger (CTM_VERTEX_ COUNT)
CTMfloat * vertices = ctm.GetFloatArray (CTM_VERTICES
CTMuint triCount = ctm.GetInteger (CTM_TRIANGLE_COUNT
CTMuint * indices = ctm.GetIntegerArray (CTM_INDICES)

) 5
)7

14

17

// Deal with the mesh (e.g. transcode it to our
// internal representation)
/7

}

catch (exception &e)

{

cout << "Error: " << e.what () << endl;

7.2 The CTMexporter class

Here is an example of how to use the CTMexporter class in C++:

void MySaveFile (CTMuint aVertCount, CTMuint aTriCount,
CTMfloat * aVertices, CTMuint % alndices,
const char * aFileName)

try

{
// Create a new OpenCTM exporter object
CTMexporter ctm;

// Define our mesh representation to OpenCTM
ctm.DefineMesh (aVertices, aVertCount, alndices,
aTriCount, NULL) ;

// Save the OpenCTM file
ctm.Save (aFileName) ;

}

catch (exception &e)

{

cout << "Error: " << e.what () << endl;

18

	1 Introduction
	2 Concepts
	2.1 The OpenCTM API
	2.2 The triangle mesh
	2.2.1 Triangle indices
	2.2.2 Vertex coordinates
	2.2.3 Normals
	2.2.4 UV coordinates
	2.2.5 Custom vertex attributes

	2.3 The OpenCTM context

	3 Compression Methods
	3.1 RAW
	3.2 MG1
	3.3 MG2

	4 Basic Usage
	4.1 Prerequisites
	4.2 Loading OpenCTM files
	4.3 Creating OpenCTM files

	5 Controlling Compression
	5.1 Selecting the compression method
	5.2 Selecting the compression level
	5.3 Selecting fixed point precision
	5.3.1 Vertex coordinate precision
	5.3.2 Normal precision
	5.3.3 UV coordinate precision
	5.3.4 Custom attribute precision

	6 Error Handling
	7 C++ Extensions
	7.1 The CTMimporter class
	7.2 The CTMexporter class

