Bonmin 1.8.9
Loading...
Searching...
No Matches
Bonmin::CurvatureEstimator Class Reference

#include <BonCurvatureEstimator.hpp>

+ Inheritance diagram for Bonmin::CurvatureEstimator:
+ Collaboration diagram for Bonmin::CurvatureEstimator:

Public Member Functions

Constructor/Destructor
 CurvatureEstimator (SmartPtr< Journalist > jnlst, SmartPtr< OptionsList > options, SmartPtr< TNLP > tnlp)
 Constructor.
 
virtual ~CurvatureEstimator ()
 Destructor.
 
bool ComputeNullSpaceCurvature (int n, const Number *x, bool new_x, const Number *x_l, const Number *x_u, const Number *g_l, const Number *g_u, bool new_bounds, const Number *z_L, const Number *z_U, int m, const Number *lam, bool new_mults, const Number *orig_d, Number *projected_d, Number &gradLagTd, Number &dTHLagd)
 Method for computing a direction projected_d related to the given direction orig_d and the two-sided product of projected_d with Hessian of Lagrangian.
 
- Public Member Functions inherited from Ipopt::ReferencedObject
 ReferencedObject ()
 
virtual ~ReferencedObject ()
 
Index ReferenceCount () const
 
void AddRef (const Referencer *referencer) const
 
void ReleaseRef (const Referencer *referencer) const
 

Detailed Description

Definition at line 29 of file BonCurvatureEstimator.hpp.

Constructor & Destructor Documentation

◆ CurvatureEstimator()

Bonmin::CurvatureEstimator::CurvatureEstimator ( SmartPtr< Journalist > jnlst,
SmartPtr< OptionsList > options,
SmartPtr< TNLP > tnlp )

Constructor.

It is given the options list to extract options specifying linear solver options.

◆ ~CurvatureEstimator()

virtual Bonmin::CurvatureEstimator::~CurvatureEstimator ( )
virtual

Destructor.

Member Function Documentation

◆ ComputeNullSpaceCurvature()

bool Bonmin::CurvatureEstimator::ComputeNullSpaceCurvature ( int n,
const Number * x,
bool new_x,
const Number * x_l,
const Number * x_u,
const Number * g_l,
const Number * g_u,
bool new_bounds,
const Number * z_L,
const Number * z_U,
int m,
const Number * lam,
bool new_mults,
const Number * orig_d,
Number * projected_d,
Number & gradLagTd,
Number & dTHLagd )

Method for computing a direction projected_d related to the given direction orig_d and the two-sided product of projected_d with Hessian of Lagrangian.

The arrays x, y_c, and y_d constain the primal and dual variables definiting the Lagrangian Hessian. The vectors active_d and active_x contain the indices of active inequality and bound constraints, respectively. A positive index number is interpreted to belong to an upper bound, and a negative number to a lower bound. The return status is false if the computation was not possible, and true otherwise.


The documentation for this class was generated from the following file: